Predicting progressive delamination via interface elements

Publisher Summary This chapter reviews some of the background behind the development of interface elements with application to composites delamination. Interface elements are elements which model a thin or zero thickness layer between continua in a finite element analysis. The location of the interface elements are not themselves a prediction of the crack path but a plane of potential delamination which may or may not fail depending on the loading and the relevant failure criteria. For laminated composites this approach works well as the planes of possible delamination are generally well defined between the plies or at adhesive bond lines. The relative nodal displacements under an applied load can be separated out into normal and shearing components. The normal component represents a mode I type crack opening and the shearing a combination of mode II and III since these cannot be distinguished without knowledge of the direction of the crack front. The constitutive relation of the interface element is based on a traction-displacement law which is generally elastic up to a stress-based failure criterion (initiation) and then undergoes a softening behavior which describes an area under the curve equal to the critical fracture energy (GC) at complete failure (propagation).

[1]  P. Camanho,et al.  Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials , 2003 .

[2]  Carlos G. Davila,et al.  Irreversible constitutive law for modeling the delamination process using interfacial surface discontinuities , 2004 .

[3]  Pedro P. Camanho,et al.  Fracture analysis of composite co-cured structural joints using decohesion elements , 2008 .

[4]  Nobuo Takeda,et al.  Numerical study for identifying damage in open-hole composites with embedded FBG sensors and its application to experiment results , 2006 .

[5]  L. Asp The effects of moisture and temperature on the interlaminar delamination toughness of a carbon/epoxy composite , 1998 .

[6]  M. Kanninen,et al.  A finite element calculation of stress intensity factors by a modified crack closure integral , 1977 .

[7]  Michael R Wisnom,et al.  A combined stress-based and fracture-mechanics-based model for predicting delamination in composites , 1993 .

[8]  Jiye Chen,et al.  Predicting Progressive Delamination of Stiffened Fibre-Composite Panel and Repaired Sandwich Panel by Decohesion Models , 2002 .

[9]  Hiroshi Suemasu,et al.  Damage propagation in CFRP laminates subjected to low velocity impact and static indentation , 2007 .

[10]  M. Wisnom,et al.  Predicting the effect of through-thickness compressive stress on delamination using interface elements , 2008 .

[11]  Michael R Wisnom,et al.  Modelling the Effect of Cracks on Interlaminar Shear Strength , 1996 .

[12]  Larsgunnar Nilsson,et al.  Simulation of low velocity impact on fiber laminates using a cohesive zone based delamination model , 2004 .

[13]  D. Borst,et al.  A NON-LINEAR FINITE ELEMENT APPROACH FOR THE ANALYSIS OF MODE-I FREE EDGE DELAMINATION IN COMPOSITES , 1993 .

[14]  Michael R Wisnom,et al.  PREDICTION OF DELAMINATION INITIATION AND GROWTH FROM DISCONTINUOUS PLIES USING INTERFACE ELEMENTS , 1998 .

[15]  F. J. Mello,et al.  Modeling the Initiation and Growth of Delaminations in Composite Structures , 1996 .

[16]  John C. Brewer,et al.  Quadratic Stress Criterion for Initiation of Delamination , 1988 .

[17]  C. Shet,et al.  Effect of the Shape of T–δ Cohesive Zone Curves on the Fracture Response , 2004 .

[18]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[19]  Pierre J. A. Minguet,et al.  Testing and Analysis of Composite Skin/Stringer Debonding Under Multi-Axial Loading , 1999 .

[20]  Lorenzo Iannucci,et al.  Dynamic delamination modelling using interface elements , 2006 .

[21]  Larsgunnar Nilsson,et al.  Simulation of delamination in fiber composites with a discrete cohesive failure model , 2001 .

[22]  F. Chang,et al.  Modelling of splitting and delamination in notched cross-ply laminates , 2000 .

[23]  Larsgunnar Nilsson,et al.  Simulating DCB, ENF and MMB experiments using shell elements and a cohesive zone model , 2004 .

[24]  Paul Robinson,et al.  Numerical simulation of fatigue‐driven delamination using interface elements , 2005 .

[25]  G.A.O. Davies,et al.  Predicting delamination and debonding in modern aerospace composite structures , 2006 .

[26]  Klaus Friedrich,et al.  Application of fracture mechanics to composite materials , 1989 .

[27]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[28]  Pedro P. Camanho,et al.  Simulation of delamination in composites under high-cycle fatigue , 2007 .

[29]  Qingda Yang,et al.  Cohesive models for damage evolution in laminated composites , 2005 .

[30]  M. Crisfield,et al.  Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues , 2001 .

[31]  Stephen R. Hallett,et al.  Numerical Investigation of Progressive Damage and the Effect of Layup in Notched Tensile Tests , 2006 .

[32]  Francesco Aymerich,et al.  Prediction of impact-induced delamination in cross-ply composite laminates using cohesive interface elements , 2008 .

[33]  Nobuo Takeda,et al.  Numerical simulation of interlaminar damage propagation in CFRP cross-ply laminates under transverse loading , 2007 .

[34]  Stephen R Hallett,et al.  Cohesive zone length in numerical simulations of composite delamination , 2008 .

[35]  M. A. Crisfield,et al.  Progressive Delamination Using Interface Elements , 1998 .

[36]  M. Benzeggagh,et al.  Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus , 1996 .

[37]  J. Hutchinson,et al.  The relation between crack growth resistance and fracture process parameters in elastic-plastic solids , 1992 .

[38]  Alastair Johnson,et al.  Computational methods for predicting impact damage in composite structures , 2001 .

[39]  Michael R Wisnom,et al.  Modelling the interaction between matrix cracks and delamination damage in scaled quasi-isotropic specimens , 2008 .

[40]  Jonathan Awerbuch,et al.  Notched Strength of Composite Laminates: Predictions and Experiments—A Review , 1985 .

[41]  Michael R Wisnom,et al.  A concise interface constitutive law for analysis of delamination and splitting in composite materials and its application to scaled notched tensile specimens , 2007 .

[42]  Pedro P. Camanho,et al.  An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models , 2007 .

[43]  Alberto Corigliano,et al.  Damage analysis of interlaminar fracture specimens , 1995 .

[44]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[45]  W. Bradley Chapter 5 - Relationship of Matrix Toughness to Interlaminar Fracture Toughness , 1989 .

[46]  Lorenzo Iannucci,et al.  Formulation and implementation of decohesion elements in an explicit finite element code , 2006 .