Synthetic diagnostics platform for fusion plasmas (invited).

A Synthetic Diagnostics Platform (SDP) for fusion plasmas has been developed which provides state of the art synthetic reflectometry, beam emission spectroscopy, and Electron Cyclotron Emission (ECE) diagnostics. Interfaces to the plasma simulation codes GTC, XGC-1, GTS, and M3D-C1 are provided, enabling detailed validation of these codes. In this paper, we give an overview of SDP's capabilities, and introduce the synthetic diagnostic modules. A recently developed synthetic ECE Imaging module which self-consistently includes refraction, diffraction, emission, and absorption effects is discussed in detail. Its capabilities are demonstrated on two model plasmas. The importance of synthetic diagnostics in validation is shown by applying the SDP to M3D-C1 output and comparing it with measurements from an edge harmonic oscillation mode on DIII-D.

[1]  I. Shkarofsky New representations of dielectric tensor elements in magnetized plasma , 1986, Journal of Plasma Physics.

[2]  I. Hutchinson Excited-state populations in neutral beam emission , 2002 .

[3]  C. Domier,et al.  Electron cyclotron emission imaging in tokamak plasmas. , 2010, Applied optics.

[4]  Neutral beam stopping and emission in fusion plasmas I: deuterium beams , 2000 .

[5]  R. Nazikian,et al.  A tutorial on the basic principles of microwave reflectometry applied to fluctuation measurements in fusion plasmas , 2001 .

[6]  Stephen C. Jardin,et al.  Calculations of two-fluid magnetohydrodynamic axisymmetric steady-states , 2009, J. Comput. Phys..

[7]  I G J Classen,et al.  ECE-imaging of the H-mode pedestal (invited). , 2012, The Review of scientific instruments.

[8]  K. Tritz,et al.  Erratum: “The beam emission spectroscopy diagnostic on the DIII-D tokamak” [Rev. Sci. Instrum. 70, 913 (1999)] , 1999 .

[9]  A. Popov,et al.  On application of the reciprocity theorem to calculation of a microwave radiation signal in inhomogeneous hot magnetized plasmas , 2002 .

[10]  B J Tobias,et al.  Technical overview of the millimeter-wave imaging reflectometer on the DIII-D tokamak (invited). , 2014, The Review of scientific instruments.

[11]  R. Nazikian,et al.  Microwave Imaging Reflectometry for the study of Edge Harmonic Oscillations on DIII-D , 2015, Journal of Instrumentation.

[12]  C. Domier,et al.  Process to generate a synthetic diagnostic for microwave imaging reflectometry with the full-wave code FWR2D. , 2014, The Review of scientific instruments.

[13]  C. Kessel,et al.  2D reflectometer modelling for optimizing the ITER low-field side X-mode reflectometer system , 2006 .

[14]  L. Lao,et al.  Quiescent double barrier high-confinement mode plasmas in the DIII-D tokamak , 2001 .

[15]  J. Manickam,et al.  Gyro-kinetic simulation of global turbulent transport properties in tokamak experiments , 2006 .

[16]  R. Nazikian,et al.  Two-dimensional simulations of correlation reflectometry in fusion plasmas , 2002 .

[17]  E. Mazzucato,et al.  Reflectometer measurements of density fluctuations in tokamak plasmas (invited) , 1995 .

[18]  D. P. Stotler,et al.  Validation in fusion research: Towards guidelines and best practices , 2008, 0801.2787.

[19]  Choong-Seock Chang,et al.  Full-f gyrokinetic particle simulation of centrally heated global ITG turbulence from magnetic axis to edge pedestal top in a realistic tokamak geometry , 2009 .

[20]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[21]  R. Cano,et al.  Electron cyclotron emission and absorption in fusion plasmas , 1983 .

[22]  Ernest J. Valeo,et al.  Correlation reflectometry for turbulence and magnetic field measurements in fusion plasmas (invited) , 2003 .