The genome of the fire ant Solenopsis invicta

Ants have evolved very complex societies and are key ecosystem members. Some ants, such as the fire ant Solenopsis invicta, are also major pests. Here, we present a draft genome of S. invicta, assembled from Roche 454 and Illumina sequencing reads obtained from a focal haploid male and his brothers. We used comparative genomic methods to obtain insight into the unique features of the S. invicta genome. For example, we found that this genome harbors four adjacent copies of vitellogenin. A phylogenetic analysis revealed that an ancestral vitellogenin gene first underwent a duplication that was followed by possibly independent duplications of each of the daughter vitellogenins. The vitellogenin genes have undergone subfunctionalization with queen- and worker-specific expression, possibly reflecting differential selection acting on the queen and worker castes. Additionally, we identified more than 400 putative olfactory receptors of which at least 297 are intact. This represents the largest repertoire reported so far in insects. S. invicta also harbors an expansion of a specific family of lipid-processing genes, two putative orthologs to the transformer/feminizer sex differentiation gene, a functional DNA methylation system, and a single putative telomerase ortholog. EST data indicate that this S. invicta telomerase ortholog has at least four spliceforms that differ in their use of two sets of mutually exclusive exons. Some of these and other unique aspects of the fire ant genome are likely linked to the complex social behavior of this species.

[1]  Chromosome Numbers of the Red and the Black Imported Fire Ants, Solenopsis invicta and S. richteri, , 1976 .

[2]  A. Bird DNA methylation and the frequency of CpG in animal DNA. , 1980, Nucleic acids research.

[3]  S. Vinson,et al.  Division of labour and specification of castes in the red imported fire ant Solenopsis invicta buren , 1981, Animal Behaviour.

[4]  S. Vinson Economic Impact and Control of Social Insects , 1985 .

[5]  GENETIC ORIGIN OF MALE DIPLOIDY IN THE FIRE ANT, SOLENOPSIS INVICTA (HYMENOPTERA: FORMICIDAE), AND ITS EVOLUTIONARY SIGNIFICANCE , 1985, Evolution; international journal of organic evolution.

[6]  L. Keller,et al.  Extraordinary lifespans in ants: a test of evolutionary theories of ageing , 1997, Nature.

[7]  G. Robinson,et al.  Juvenile hormone in adult eusocial Hymenoptera: gonadotropin and behavioral pacemaker. , 1997, Archives of insect biochemistry and physiology.

[8]  L. Keller,et al.  Genetic control of social organization in an ant. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[9]  L. Keller,et al.  Selfish genes: a green beard in the red fire ant , 1998, Nature.

[10]  G. Martin,et al.  The genetics of aging. , 2003, Annual review of genomics and human genetics.

[11]  J. Li,et al.  Genome complexity and organization in the red imported fire ant Solenopsis invicta Buren. , 2000, Genetical research.

[12]  Gene E. Robinson,et al.  Juvenile Hormone Paces Behavioral Development in the Adult Worker Honey Bee , 2000, Hormones and Behavior.

[13]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[14]  K. Ross,et al.  Identification of a Major Gene Regulating Complex Social Behavior , 2001, Science.

[15]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[16]  Lewis Y. Geer,et al.  CDART: protein homology by domain architecture. , 2002, Genome research.

[17]  Matthew R. Pocock,et al.  The Bioperl toolkit: Perl modules for the life sciences. , 2002, Genome research.

[18]  Conservation of (TTAGG)(n) telomeric sequences among ants (Hymenoptera, Formicidae). , 2002, The Journal of heredity.

[19]  Cynthia Kenyon,et al.  Timing Requirements for Insulin/IGF-1 Signaling in C. elegans , 2002, Science.

[20]  Long-Cheng Li,et al.  MethPrimer: designing primers for methylation PCRs , 2002, Bioinform..

[21]  E. Vargo,et al.  Changes in juvenile hormone biosynthetic rate and whole body content in maturing virgin queens of Solenopsis invicta. , 2003, Journal of insect physiology.

[22]  G. Amdam,et al.  Social exploitation of vitellogenin , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Brad T. Sherman,et al.  DAVID: Database for Annotation, Visualization, and Integrated Discovery , 2003, Genome Biology.

[24]  E. Mariani,et al.  Different rates of telomere shortening and telomerase activity reduction in CD8 T and CD16 NK lymphocytes with ageing , 2003, Experimental Gerontology.

[25]  R. Durbin,et al.  GeneWise and Genomewise. , 2004, Genome research.

[26]  L. Keller,et al.  Size and fat content of gynes in relation to the mode of colony founding in ants (Hymenoptera; Formicidae) , 1989, Oecologia.

[27]  F. Marec,et al.  Phylogenetic distribution of TTAGG telomeric repeats in insects. , 2004, Genome.

[28]  J. Johnston,et al.  Tiny genomes and endoreduplication in Strepsiptera , 2004, Insect molecular biology.

[29]  David F. Williams,et al.  Biological control of fire ants: an update on new techniques. , 2004, Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology.

[30]  Leslie B. Vosshall,et al.  Or83b Encodes a Broadly Expressed Odorant Receptor Essential for Drosophila Olfaction , 2004, Neuron.

[31]  M. Goodisman,et al.  EVOLUTION OF INSECT METAMORPHOSIS: A MICROARRAY-BASED STUDY OF LARVAL AND ADULT GENE EXPRESSION IN THE ANT CAMPONOTUS FESTINATUS , 2005, Evolution; international journal of organic evolution.

[32]  P. Xu,et al.  Drosophila OBP LUSH Is Required for Activity of Pheromone-Sensitive Neurons , 2005, Neuron.

[33]  Joaquín Dopazo,et al.  PupasView: a visual tool for selecting suitable SNPs, with putative pathological effect in genes, for genotyping purposes , 2005, Nucleic Acids Res..

[34]  R. Crozier,et al.  Population genetics and history of the introduced fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), in Australia , 2005 .

[35]  Tatiana A. Tatusova,et al.  NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins , 2004, Nucleic Acids Res..

[36]  G. Amdam,et al.  Reproductive protein protects functionally sterile honey bee workers from oxidative stress. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Walter R. Tschinkel,et al.  The Fire Ants , 2006 .

[38]  Ying Wang,et al.  Insights into social insects from the genome of the honeybee Apis mellifera , 2006, Nature.

[39]  Hugh M Robertson,et al.  The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. , 2006, Genome research.

[40]  Silke Sachse,et al.  Atypical Membrane Topology and Heteromeric Function of Drosophila Odorant Receptors In Vivo , 2006, PLoS biology.

[41]  Paolo Uva,et al.  An annotated cDNA library and microarray for large-scale gene-expression studies in the ant Solenopsis invicta , 2007, Genome Biology.

[42]  Reds under your feet , 2006 .

[43]  K. Ross,et al.  Population Genetics of the Invasive Fire Ant Solenopsis invicta (Hymenoptera: Formicidae) in the United States , 2006 .

[44]  D. Wheeler,et al.  Expression of insulin pathway genes during the period of caste determination in the honey bee, Apis mellifera , 2006, Insect molecular biology.

[45]  X. Zhou,et al.  Regulation of polyphenic caste differentiation in the termite Reticulitermes flavipes by interaction of intrinsic and extrinsic factors , 2007, Journal of Experimental Biology.

[46]  J. Johnston,et al.  The evolution of genome size in ants , 2008, BMC Evolutionary Biology.

[47]  C. Shih,et al.  Population genetic structure of the red imported fire ant, Solenopsis invicta, in Taiwan , 2008, Insectes Sociaux.

[48]  L. Keller,et al.  Differential gene expression between adult queens and workers in the ant Lasius niger , 2007, Molecular ecology.

[49]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[50]  R. E. Page,et al.  The Gene vitellogenin Has Multiple Coordinating Effects on Social Organization , 2007, PLoS biology.

[51]  L. Keller,et al.  Short telomeres in short-lived males: what are the molecular and evolutionary causes? , 2007, Aging cell.

[52]  Ying Wang,et al.  Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity , 2007, Proceedings of the National Academy of Sciences.

[53]  M. Sharkey Phylogeny and Classification of Hymenoptera , 2007 .

[54]  Tatiana Tatusova,et al.  NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins , 2004, Nucleic Acids Res..

[55]  Alexander F. Auch,et al.  MEGAN analysis of metagenomic data. , 2007, Genome research.

[56]  Albert Jeltsch,et al.  Human DNMT2 methylates tRNA(Asp) molecules using a DNA methyltransferase-like catalytic mechanism. , 2008, RNA.

[57]  Paolo Uva,et al.  Fourmidable: a database for ant genomics , 2009, BMC Genomics.

[58]  K. Ross,et al.  Estimation of the number of founders of an invasive pest insect population: the fire ant Solenopsis invicta in the USA , 2008, Proceedings of the Royal Society B: Biological Sciences.

[59]  C. A. Strong,et al.  Expressed sequence tags from the red imported fire ant, Solenopsis invicta: annotation and utilization for discovery of viruses. , 2008, Journal of invertebrate pathology.

[60]  Kazutaka Katoh,et al.  Recent developments in the MAFFT multiple sequence alignment program , 2008, Briefings Bioinform..

[61]  R. Kucharski,et al.  Nutritional Control of Reproductive Status in Honeybees via DNA Methylation , 2008, Science.

[62]  Masaaki Oda,et al.  QUMA: quantification tool for methylation analysis , 2008, Nucleic Acids Res..

[63]  L. Riddiford Juvenile hormone action: a 2007 perspective. , 2008, Journal of insect physiology.

[64]  H. Robertson,et al.  The red flour beetle's large nose: an expanded odorant receptor gene family in Tribolium castaneum. , 2008, Insect biochemistry and molecular biology.

[65]  K. Hartfelder,et al.  The insulin signaling pathway in honey bee (Apis mellifera) caste development - differential expression of insulin-like peptides and insulin receptors in queen and worker larvae. , 2008, Journal of insect physiology.

[66]  Andy Law,et al.  An introduction to scripting in Ruby for biologists , 2009, BMC Bioinformatics.

[67]  Matthew E Hudson,et al.  Sequencing breakthroughs for genomic ecology and evolutionary biology , 2008, Molecular ecology resources.

[68]  L. Keller,et al.  Genome-Wide Expression Patterns and the Genetic Architecture of a Fundamental Social Trait , 2008, PLoS genetics.

[69]  M. Schiøtt,et al.  Evidence for the evolutionary nascence of a novel sex determination pathway in honeybees , 2008, Nature.

[70]  Henry S. Pollock,et al.  Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies , 2008, Proceedings of the National Academy of Sciences.

[71]  Observation of nuptial flights of the red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae) in Mainland China. , 2009 .

[72]  Geoffrey J. Barton,et al.  Jalview Version 2—a multiple sequence alignment editor and analysis workbench , 2009, Bioinform..

[73]  Sean R Eddy,et al.  A new generation of homology search tools based on probabilistic inference. , 2009, Genome informatics. International Conference on Genome Informatics.

[74]  Y. Pittelkow,et al.  Epigenetic regulation of the honey bee transcriptome: unravelling the nature of methylated genes , 2009, BMC Genomics.

[75]  M. Schiøtt,et al.  Sex Determination in Honeybees: Two Separate Mechanisms Induce and Maintain the Female Pathway , 2009, PLoS biology.

[76]  M. Goodisman,et al.  DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera , 2009, Proceedings of the National Academy of Sciences.

[77]  Keith Bradnam,et al.  Assessing the gene space in draft genomes , 2008, Nucleic acids research.

[78]  Eugene Y Chan,et al.  Next-generation sequencing methods: impact of sequencing accuracy on SNP discovery. , 2009, Methods in molecular biology.

[79]  David K Yeates,et al.  Single-copy nuclear genes resolve the phylogeny of the holometabolous insects , 2009, BMC Biology.

[80]  Erik L. L. Sonnhammer,et al.  InParanoid 7: new algorithms and tools for eukaryotic orthology analysis , 2009, Nucleic Acids Res..

[81]  J. Lucchesi,et al.  Functional analysis of the cis‐acting elements responsible for the induction of the Cyp6a8 and Cyp6g1 genes of Drosophila melanogaster by DDT, phenobarbital and caffeine , 2010, Insect molecular biology.

[82]  L. Beukeboom,et al.  Insect sex determination: it all evolves around transformer. , 2010, Current opinion in genetics & development.

[83]  L. Keller,et al.  Changes in reproductive roles are associated with changes in gene expression in fire ant queens , 2010, Molecular ecology.

[84]  Amos Bairoch,et al.  PROSITE, a protein domain database for functional characterization and annotation , 2009, Nucleic Acids Res..

[85]  T. Gregory,et al.  An expansion of the genome size dataset for the insect order Hymenoptera, with a first test of parasitism and eusociality as possible constraints , 2010, Insect molecular biology.

[86]  G. J. Blomquist,et al.  Insect hydrocarbons : biology, biochemistry, and chemical ecology , 2010 .

[87]  M. Goodisman,et al.  Functional Conservation of DNA Methylation in the Pea Aphid and the Honeybee , 2010, Genome biology and evolution.

[88]  Pjotr Prins,et al.  BioRuby: bioinformatics software for the Ruby programming language , 2010, Bioinform..

[89]  J. Gadau,et al.  The insect chemoreceptor superfamily of the parasitoid jewel wasp Nasonia vitripennis , 2010, Insect molecular biology.

[90]  Huanming Yang,et al.  De novo assembly of human genomes with massively parallel short read sequencing. , 2010, Genome research.

[91]  L. Beukeboom,et al.  Maternal Control of Haplodiploid Sex Determination in the Wasp Nasonia , 2010, Science.

[92]  Evgeny M. Zdobnov,et al.  Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle , 2010, Proceedings of the National Academy of Sciences.