High-efficiency light-emitting device based on silicon nanostructures and tunneling carrier injection

Light-emitting device structure (Si∕SiO2/low-dimensional Si∕Si3N4∕Si) is proposed. The low-dimensional Si governed the photon generation efficiency and energy spectrum whereas the asymmetry barrier heights on both sides formed by the SiO2 and Si3N4, respectively, provide high-efficiency carrier injection based on direct tunneling and maximize the rate of the recombination events taking place in the low-dimensional silicon. Detailed theoretical modeling of carrier transportation in this device structure is developed. Theoretical calculations demonstrate that the recombination rate of carrier with this structure can be as high as 3×1023cm−2s−1 and are governed by the barrier heights, thickness of the dielectric films, and the width of low-dimensional Si region.

[1]  Louis E. Brus,et al.  A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites , 1983 .

[2]  M. Green,et al.  Efficient silicon light-emitting diodes , 2001, Nature.

[3]  L. D. Negro,et al.  Optical gain in silicon nanocrystals , 2000, Nature.

[4]  A. Alivisatos,et al.  Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer , 1997 .

[5]  Xiangfeng Duan,et al.  Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires , 2001, Science.

[6]  Hei Wong,et al.  A novel approach for fabricating light-emitting porous polysilicon films , 2002, Microelectron. Reliab..

[7]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[8]  S. Ossicini,et al.  Porous silicon: a quantum sponge structure for silicon based optoelectronics , 2000 .

[9]  Hei Wong,et al.  Defects in silicon oxynitride gate dielectric films , 2002, Microelectron. Reliab..

[10]  K. Cheah,et al.  QUANTUM CONFINEMENT EFFECT IN THIN QUANTUM WIRES , 1997 .

[11]  J. Jorné,et al.  Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen , 1999 .

[12]  G. Ghislotti,et al.  Room‐temperature visible luminescence from silicon nanocrystals in silicon implanted SiO2 layers , 1995 .

[13]  Allan,et al.  Theoretical aspects of the luminescence of porous silicon. , 1993, Physical review. B, Condensed matter.

[14]  E. F. Steigmeier,et al.  Size dependence of band gaps in silicon nanostructures , 1995 .

[15]  Victor I. Klimov,et al.  Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties , 2007 .

[16]  M. Bawendi,et al.  Electroluminescence from CdSe quantum‐dot/polymer composites , 1995 .

[17]  Read,et al.  First-principles calculations of the electronic properties of silicon quantum wires. , 1992, Physical review letters.

[18]  Hei Wong,et al.  Silicon dots/clusters in silicon nitride: photoluminescence and electron spin resonance , 1999 .

[19]  Hei Wong Recent developments in silicon optoelectronic devices , 2002, Microelectron. Reliab..

[20]  G. Shao,et al.  An efficient room-temperature silicon-based light-emitting diode , 2001, Nature.

[21]  S. T. Lee,et al.  Small-Diameter Silicon Nanowire Surfaces , 2003, Science.

[22]  H. Möhwald,et al.  Electroluminescence of different colors from polycation/CdTe nanocrystal self-assembled films , 2000 .