Defect densities inside the conductive filament of RRAMs

[1]  X. Cartoixà,et al.  Transport properties of oxygen vacancy filaments in metal/crystalline or amorphous HfO 2 /metal structures , 2012 .

[2]  J. Robertson,et al.  Electron spin resonance signature of the oxygen vacancy in HfO2 , 2012 .

[3]  J. Robertson,et al.  Calculation of point defects in rutile TiO 2 by the screened-exchange hybrid functional , 2012, 1207.2579.

[4]  Seong-Geon Park,et al.  First principles calculations of oxygen vacancy-ordering effects in resistance change memory materials incorporating binary transition metal oxides , 2012, Journal of Materials Science.

[5]  Shimeng Yu,et al.  Metal–Oxide RRAM , 2012, Proceedings of the IEEE.

[6]  K. Sankaran,et al.  First-principles simulation of oxygen diffusion in HfOx: Role in the resistive switching mechanism , 2012 .

[7]  Masaaki Niwa,et al.  ON-OFF switching mechanism of resistive–random–access–memories based on the formation and disruption of oxygen vacancy conducting channels , 2012 .

[8]  D. Gilmer,et al.  Metal oxide resistive memory switching mechanism based on conductive filament properties , 2011 .

[9]  D. Ielmini,et al.  Modeling the Universal Set/Reset Characteristics of Bipolar RRAM by Field- and Temperature-Driven Filament Growth , 2011, IEEE Transactions on Electron Devices.

[10]  D. Jeong,et al.  Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook , 2011, Nanotechnology.

[11]  Yoshio Nishi,et al.  Electronic correlation effects in reduced rutile TiO 2 within the LDA+U method , 2010 .

[12]  A. Zunger,et al.  The quest for dilute ferromagnetism in semiconductors: Guides and misguides by theory , 2010 .

[13]  E. Miranda,et al.  Model for the Resistive Switching Effect in $ \hbox{HfO}_{2}$ MIM Structures Based on the Transmission Properties of Narrow Constrictions , 2010, IEEE Electron Device Letters.

[14]  G. Pacchioni,et al.  Reduced and n-Type Doped TiO2: Nature of Ti3+ Species , 2009 .

[15]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[16]  A. Manivannan,et al.  Photoinduced electron paramagnetic resonance study of electron traps in TiO2 crystals: Oxygen vacancies and Ti3+ ions , 2009 .

[17]  R. Barklie,et al.  Electron paramagnetic resonance characterization of defects in HfO2 and ZrO2 powders and films , 2009 .

[18]  G. Watson,et al.  A DFT+U description of oxygen vacancies at the TiO2 rutile (110) surface , 2007 .

[19]  G. Bersuker,et al.  Spectroscopic properties of oxygen vacancies in monoclinic HfO2 calculated with periodic and embedded cluster density functional theory , 2007 .

[20]  A. Zunger,et al.  Nonstoichiometry as a source of magnetism in otherwise nonmagnetic oxides : Magnetically interacting cation vacancies and their percolation , 2007 .

[21]  S. Sanvito,et al.  Ferromagnetism driven by intrinsic point defects in HfO(2). , 2005, Physical review letters.

[22]  John F. Conley,et al.  Electron spin resonance observation of trapped electron centers in atomic-layer-deposited hafnium oxide on Si , 2003 .

[23]  C. Peden,et al.  Insights into Photoexcited Electron Scavenging Processes on TiO2 Obtained from Studies of the Reaction of O2 with OH Groups Adsorbed at Electronic Defects on TiO2 (110) , 2003 .

[24]  G. Pacchioni,et al.  Theoretical description of hole localization in a quartz Al center: The importance of exact electron exchange , 2000 .

[25]  H. Ohno,et al.  Zener model description of ferromagnetism in zinc-blende magnetic semiconductors , 2000, Science.

[26]  Zhang,et al.  Cation-ligand hybridization for stoichiometric and reduced TiO2 (110) surfaces determined by resonant photoemission. , 1991, Physical review. B, Condensed matter.

[27]  N. Mott Review lecture: Metal–insulator transitions , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[28]  P. Edwards,et al.  Universality aspects of the metal-nonmetal transition in condensed media , 1978 .