First-principles study on morphology and mechanical properties of single-walled carbon nanotube

Abstract In this Letter, the morphology, mechanical properties and electronic structure of single-walled carbon nanotube are investigated by use of a first-principles cluster method within the framework of local density approximation. The calculated C–C bond length, elastic modulus and tensile strength are in agreement with available experimental values. The C–C bond length is larger, and the elastic modulus and tensile strength are less in carbon nanotube than these in graphite. From the bonding analysis, we find that the bonding between carbon atoms in carbon nanotube is predominantly σ bond, and π bond takes an additional effect. Compared with graphite, the curvature effect of tube weakens the binding of σ bond, but strengthens the binding of π bond.

[1]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[2]  Erik Dujardin,et al.  Young's modulus of single-walled nanotubes , 1998 .

[3]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[4]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[5]  C. Lieber,et al.  Atomic structure and electronic properties of single-walled carbon nanotubes , 1998, Nature.

[6]  S. Prawer,et al.  Structural investigation of helium ion‐beam‐irradiated glassy carbon , 1988 .

[7]  Dekker,et al.  Imaging electron wave functions of quantized energy levels in carbon nanotubes , 1998, Science.

[8]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[9]  Á. Rubio Spectroscopic properties and STM images of carbon nanotubes , 1999, cond-mat/9903215.

[10]  A. Hassanien,et al.  Atomic structure and electronic properties of single-wall carbon nanotubes probed by scanning tunneling microscope at room temperature , 1998 .

[11]  D. Ellis,et al.  Electronic bonding characteristics of hydrogen in bcc iron: Part II. Grain boundaries , 1996 .

[12]  C. Beetz,et al.  Mechanical properties of vapour-grown carbon fibres , 1987 .

[13]  Luc T. Wille,et al.  Elastic properties of single-walled carbon nanotubes in compression , 1997 .

[14]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[15]  Wang Chongyu,et al.  First-principles investigation of hydrogen embrittlement in polycrystalline Ni 3 Al , 1998 .

[16]  F. Sanz,et al.  Dissociative chemisorption of molecular hydrogen on graphite: A mindo /3 study , 1983 .

[17]  Xin Xu,et al.  CHARGE-CONSISTENCY MODELING OF CO/NIO(100) CHEMISORPTION SYSTEM , 1995 .

[18]  Z. Guo,et al.  Calculation of theoretical strengths and bulk moduli of bcc metals , 1999 .

[19]  Ellis,et al.  Electronic structure and energetics of sapphire (0001) and (11-bar02) surfaces. , 1992, Physical review. B, Condensed matter.

[20]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[21]  H. Dai,et al.  Individual single-wall carbon nanotubes as quantum wires , 1997, Nature.

[22]  Hugh O. Pierson,et al.  Handbook of carbon, graphite, diamond, and fullerenes : properties, processing, and applications , 1993 .

[23]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[24]  Ellis,et al.  Magnetism of Fe impurities in alkaline-earth metals and Al. , 1992, Physical review. B, Condensed matter.

[25]  Jean-Christophe Charlier,et al.  Surface reconstructions and dimensional changes in single-walled carbon nanotubes , 1998 .

[26]  J. Lu,et al.  Elastic Properties of Carbon Nanotubes and Nanoropes , 1997, cond-mat/9704219.

[27]  M F Crommie,et al.  Confinement of Electrons to Quantum Corrals on a Metal Surface , 1993, Science.

[28]  G. A. D. Briggs,et al.  Elastic and shear moduli of single-walled carbon nanotube ropes , 1999 .

[29]  T. Ichihashi,et al.  Distribution of pentagons and shapes in carbon nano-tubes and nano-particles , 1993 .

[30]  M. Endo Structure of mesophase pitch-based carbon fibres , 1988 .