Qualitative Stability Analysis

[1]  Gunnar Rätsch,et al.  Large Scale Multiple Kernel Learning , 2006, J. Mach. Learn. Res..

[2]  Robert M. Freund,et al.  Condition number complexity of an elementary algorithm for computing a reliable solution of a conic linear system , 2000, Math. Program..

[3]  Edite M. G. P. Fernandes,et al.  SIPAMPL: Semi-infinite programming with AMPL , 2004, TOMS.

[4]  B. D. Craven,et al.  Non-Linear Parametric Optimization (B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammer) , 1984 .

[5]  E. Gol′šteĭn,et al.  Theory of Convex Programming , 1972 .

[6]  M. Goberna,et al.  Primal, dual and primal-dual partitions in continuous linear optimization , 2007 .

[7]  M. J. Cánovas,et al.  Stability of Indices in the KKT Conditions and Metric Regularity in Convex Semi-Infinite Optimization , 2008 .

[8]  M. J. Cánovas,et al.  On the Lipschitz Modulus of the Argmin Mapping in Linear Semi-Infinite Optimization , 2008 .

[9]  F. Toledo Some results on Lipschitz properties of the optimal values in semi-infinite programming , 2008 .

[10]  Hubertus Th. Jongen,et al.  Nonlinear optimization: Characterization of structural stability , 1991, J. Glob. Optim..

[11]  Olvi L. Mangasarian,et al.  Nonlinear Knowledge in Kernel Approximation , 2007, IEEE Transactions on Neural Networks.

[12]  Wu Li The sharp Lipschitz constants for feasible and optimal solutions of a perturbed linear program , 1993 .

[13]  Marco A. López,et al.  Semi-infinite programming , 2007, Eur. J. Oper. Res..

[14]  Jan H. Maruhn,et al.  A successive SDP-NSDP approach to a robust optimization problem in finance , 2009, Comput. Optim. Appl..

[15]  Teresa León,et al.  Optimization under Uncertainty and Linear Semi-Infinite Programming: A Survey , 2001 .

[16]  F. Javier Toledo-Moreo,et al.  Lipschitz Continuity of the Optimal Value via Bounds on the Optimal Set in Linear Semi-Infinite Optimization , 2006, Math. Oper. Res..

[17]  James W. Daniel,et al.  Remarks on Perturbations in Linear Inequalities , 1975 .

[18]  Miguel A. Goberna,et al.  Primal Attainment in Convex Infinite Optimization Duality , 2014 .

[19]  Marco A. López,et al.  Upper Semicontinuity of the Feasible Set Mapping for Linear Inequality Systems , 2002 .

[20]  Rubén Puente,et al.  Locally Farkas-Minkowski linear inequality systems , 1999 .

[21]  Miguel A. Goberna,et al.  On the stability of linear systems with an exact constraint set , 2006, Math. Methods Oper. Res..

[22]  T. Terlaky,et al.  The Optimal Set and Optimal Partition Approach to Linear and Quadratic Programming , 1996 .

[23]  John E. Mitchell,et al.  A Semidefinite Programming Based Polyhedral Cut and Price Approach for the Maxcut Problem , 2006, Comput. Optim. Appl..

[24]  Marco A. López,et al.  LIPSCHITZ MODULUS IN CONVEX SEMI-INFINITE OPTIMIZATION VIA D.C. FUNCTIONS ∗ , 2009 .

[25]  Nils Brunsson My own book review : The Irrational Organization , 2014 .

[26]  M. Kojima Strongly Stable Stationary Solutions in Nonlinear Programs. , 1980 .

[27]  Harvey J. Greenberg,et al.  The use of the optimal partition in a linear programming solution for postoptimal analysis , 1994, Oper. Res. Lett..

[28]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[29]  M. Goberna,et al.  Stability of the Feasible Set Mapping of Linear Systems with an Exact Constraint Set , 2008 .

[30]  H. Tuy Stability property of a system of inequalities , 1977 .

[31]  Paul I. Barton,et al.  Interval Methods for Semi-Infinite Programs , 2005, Comput. Optim. Appl..

[32]  I. K. Altinel,et al.  Mission-Based Component Testing for Series Systems , 2011, Ann. Oper. Res..

[33]  Miguel A. Goberna,et al.  From linear to convex systems: consistency, Farkas' Lemma and applications , 2006 .

[34]  Marco A. López,et al.  Stability in linear optimization and related topics. A personal tour , 2012 .

[35]  Marco A. López,et al.  Stability Theory for Linear Inequality Systems , 1996, SIAM J. Matrix Anal. Appl..

[36]  Hussein Baher,et al.  Analog & digital signal processing , 1990 .

[37]  F. Javier Toledo-Moreo,et al.  Distance to Solvability/Unsolvability in Linear Optimization , 2006, SIAM J. Optim..

[38]  Marco A. López,et al.  Lower Semicontinuity of the Feasible Set Mapping of Linear Systems Relative to Their Domains , 2013 .

[39]  René Henrion,et al.  Regularity and Stability in Nonlinear Semi-Infinite Optimization , 1998 .

[40]  Hubertus Th. Jongen,et al.  Stability for linearly constrained optimization problems , 1994, Math. Program..

[41]  H. Zimmermann DESCRIPTION AND OPTIMIZATION OF FUZZY SYSTEMS , 1975 .

[42]  I. K. Altinel,et al.  Optimum component test plans for phased-mission systems , 2008, Eur. J. Oper. Res..

[43]  V. N. Vera de Serio,et al.  On Metric Regularity and the Boundary of the Feasible Set in Linear Optimization , 2014 .

[44]  Teresa León,et al.  A DOWNSIDE RISK APPROACH FOR THE PORTFOLIO SELECTION PROBLEM WITH FUZZY RETURNS , 2004 .

[45]  S. M. Robinson Stability Theory for Systems of Inequalities, Part II: Differentiable Nonlinear Systems , 1976 .

[46]  Miguel A. Goberna,et al.  On the Stability of the Boundary of the Feasible Set in Linear Optimization , 2003 .

[47]  Amir Beck,et al.  Duality in robust optimization: Primal worst equals dual best , 2009, Oper. Res. Lett..

[48]  Marco A. López,et al.  On the stability of infinite-dimensional linear inequality systems , 1998 .

[49]  M. J. Cánovas,et al.  Calmness of the Feasible Set Mapping for Linear Inequality Systems , 2014 .

[50]  I. K. Altinel,et al.  The design of optimum component test plans for system reliability , 2006, Comput. Stat. Data Anal..

[51]  Marco A. López,et al.  Isolated calmness of solution mappings in convex semi-infinite optimization☆ , 2009 .

[52]  Gerhard-Wilhelm Weber,et al.  On numerical optimization theory of infinite kernel learning , 2010, J. Glob. Optim..

[53]  Huynh van Ngai,et al.  Stability of Error Bounds for Convex Constraint Systems in Banach Spaces , 2010, SIAM J. Optim..

[54]  Vaithilingam Jeyakumar,et al.  Robust Duality in Parametric Convex Optimization , 2013 .

[55]  Marco A. López,et al.  Stability in convex semi-infinite programming and rates of convergence of optimal solutions of discretized finite subproblems , 2003 .

[56]  R. Boţ,et al.  Conjugate Duality in Convex Optimization , 2010 .

[57]  D. Dubois,et al.  The mean value of a fuzzy number , 1987 .

[58]  Miguel A. Goberna,et al.  Primal-dual stability in continuous linear optimization , 2008, Math. Program..

[59]  Boris S. Mordukhovich,et al.  Variational Analysis in Semi-Infinite and Infinite Programming, I: Stability of Linear Inequality Systems of Feasible Solutions , 2009, SIAM J. Optim..

[60]  Kristin P. Bennett,et al.  The Interplay of Optimization and Machine Learning Research , 2006, J. Mach. Learn. Res..

[61]  Miguel A. Goberna,et al.  On stable uniqueness in linear semi-infinite optimization , 2012, J. Glob. Optim..

[62]  Alexander Shapiro Directional differentiability of the optimal value function in convex semi-infinite programming , 1995, Math. Program..

[63]  Jean-Philippe Vial,et al.  Theory and algorithms for linear optimization - an interior point approach , 1998, Wiley-Interscience series in discrete mathematics and optimization.

[64]  G. Mora,et al.  Stability of Linear Inequality Systems Measured by the Hausdorff Metric , 2000 .

[65]  Miguel A. Goberna,et al.  Geometric fundamentals of the simplex method in semi-infinite programming , 1988 .

[66]  Jan H. Maruhn,et al.  Robust Static Super-Replication of Barrier Options , 2009 .

[67]  Yong Shi,et al.  Recent advances on support vector machines research , 2012 .

[68]  Bruno Brosowski,et al.  Parametric semi-infinite optimization , 1982 .

[69]  A. Ruszczynski,et al.  Semi-infinite probabilistic optimization: first-order stochastic dominance constrain , 2004 .

[70]  D. Klatte Nonsmooth equations in optimization , 2002 .

[71]  R. Rockafellar,et al.  Implicit Functions and Solution Mappings , 2009 .

[72]  Ralf Werner,et al.  A novel feasible discretization method for linear semi-infinite programming applied to basket option pricing , 2011 .

[73]  Etienne E. Kerre,et al.  Reasonable properties for the ordering of fuzzy quantities (II) , 2001, Fuzzy Sets Syst..

[74]  H. Jongen,et al.  On stability and stationary points in nonlinear optimization , 1986, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[75]  Hui Hu,et al.  On approximate solutions of infinite systems of linear inequalities , 1989 .

[76]  M. Goberna,et al.  Topological stability of linear semi-infinite inequality systems , 1996 .

[77]  Roberto Lucchetti,et al.  Convexity and well-posed problems , 2006 .

[78]  Tomas Gal,et al.  Postoptimal Analyses, Parametric Programming, and Related Topics: Degeneracy, Multicriteria Decision Making, Redundancy , 1994 .

[79]  Shu-Cherng Fang,et al.  A relaxed cutting plane algorithm for solving fuzzy inequality systems , 1999 .

[80]  Radko Mesiar,et al.  Fuzzy Interval Analysis , 2000 .

[81]  E. Yildirim,et al.  Unifying Optimal Partition Approach to Sensitivity Analysis in Conic Optimization , 2004 .

[82]  Xing Zhang,et al.  An interval full-infinite mixed-integer programming method for planning municipal energy systems - A case study of Beijing , 2011 .

[83]  A. L. Soyster,et al.  Semi-Infinite and Fuzzy Set Programming , 1983 .

[84]  Vaithilingam Jeyakumar,et al.  Robust solutions to multi-objective linear programs with uncertain data , 2014, Eur. J. Oper. Res..

[85]  Marco C. Campi,et al.  The Exact Feasibility of Randomized Solutions of Uncertain Convex Programs , 2008, SIAM J. Optim..

[86]  Alireza Ghaffari Hadigheh,et al.  Sensitivity analysis in linear optimization: Invariant support set intervals , 2006, Eur. J. Oper. Res..

[87]  Teresa León,et al.  Solving a class of fuzzy linear programs by using semi-infinite programming techniques , 2004, Fuzzy Sets Syst..

[88]  Alireza Karimi,et al.  Fixed-order H∞ controller design for nonparametric models by convex optimization , 2010, Autom..

[89]  Marco A. López,et al.  Stability of the Feasible Set Mapping in Convex Semi-Infinite Programming , 2001 .

[90]  Allen L. Soyster,et al.  Technical Note - Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming , 1973, Oper. Res..

[91]  Stability in disjunctive linear optimization I: continuity of the feasible set , 1990 .

[92]  J. Parra,et al.  Stability of Linear Inequality Systems in a Parametric Setting , 2005 .

[93]  S. M. Robinson Some continuity properties of polyhedral multifunctions , 1981 .

[94]  M. Goberna,et al.  Generic primal-dual solvability in continuous linear semi-infinite programming , 2008 .

[95]  Miguel A. Goberna,et al.  On the Stability of the Extreme Point Set in Linear Optimization , 2005, SIAM J. Optim..

[96]  Hubertus Th. Jongen,et al.  Semi-infinite optimization: Structure and stability of the feasible set , 1990 .

[97]  Marco A. López,et al.  Penalty and Smoothing Methods for Convex Semi-Infinite Programming , 2009, Math. Oper. Res..

[98]  Tamás Terlaky,et al.  An Interior Point Constraint Generation Algorithm for Semi-Infinite Optimization with Health-Care Application , 2011, Oper. Res..

[99]  A. Bodini,et al.  Generalized Moment Theory and Bayesian Robustness Analysis for Hierarchical Mixture Models , 2006 .

[100]  Darinka Dentcheva,et al.  Optimization with Stochastic Dominance Constraints , 2003, SIAM J. Optim..

[101]  Marco A. López,et al.  Calmness Modulus of Linear Semi-infinite Programs , 2013, SIAM J. Optim..

[102]  Jacques Gauvin Formulae for the Sensitivity Analysis of Linear Programming Problems , 2001 .

[103]  Marco A. López,et al.  Distance to ill-posedness for linear inequality systems under block perturbations: convex and infinite-dimensional cases , 2011 .

[104]  Constantine Caramanis,et al.  Theory and Applications of Robust Optimization , 2010, SIAM Rev..

[105]  M. Powell,et al.  Approximation theory and methods , 1984 .

[106]  W W Cooper,et al.  DUALITY, HAAR PROGRAMS, AND FINITE SEQUENCE SPACES. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[107]  J. Renegar Some perturbation theory for linear programming , 1994, Math. Program..

[108]  Guangming Zeng,et al.  Identification of Optimal Urban Solid Waste Flow Schemes under Impacts of Energy Prices , 2008 .

[109]  Abderrahim Hantoute,et al.  Characterization of total ill-posedness in linear semi-infinite optimization , 2008 .

[110]  Louis Anthony Cox,et al.  Wiley encyclopedia of operations research and management science , 2011 .

[111]  Kok Lay Teo,et al.  Near-field broadband beamformer design via multidimensional semi-infinite-linear programming techniques , 2003, IEEE Trans. Speech Audio Process..

[112]  M. Teboulle,et al.  Expected Utility, Penalty Functions, and Duality in Stochastic Nonlinear Programming , 1986 .

[113]  Adrian S. Lewis,et al.  An extension of the simplex algorithm for semi-infinite linear programming , 1989, Math. Program..

[114]  Jian Hu,et al.  Sample Average Approximation for Stochastic Dominance Constrained Programs , 2009 .

[115]  Daniel A. Jaume,et al.  Representability of convex sets by analytical linear inequality systems , 2004 .

[116]  Li He,et al.  ISMISIP: an inexact stochastic mixed integer linear semi-infinite programming approach for solid waste management and planning under uncertainty , 2008 .

[117]  A. Ruszczynski,et al.  Portfolio optimization with stochastic dominance constraints , 2006 .

[118]  Constantin Zalinescu,et al.  Subdifferential Calculus Rules in Convex Analysis: A Unifying Approach Via Pointwise Supremum Functions , 2008, SIAM J. Optim..

[119]  Oliver Stein,et al.  Solving Semi-Infinite Optimization Problems with Interior Point Techniques , 2003, SIAM J. Control. Optim..

[120]  Miguel A. Goberna,et al.  Sensitivity analysis in linear semi-infinite programming: Perturbing cost and right-hand-side coefficients , 2007, Eur. J. Oper. Res..

[121]  Bruno Betrò,et al.  An accelerated central cutting plane algorithm for linear semi-infinite programming , 2004, Math. Program..

[122]  Olvi L. Mangasarian,et al.  Nonlinear Knowledge-Based Classification , 2008, IEEE Transactions on Neural Networks.

[123]  F. Javier Toledo-Moreo,et al.  Distance to ill-posedness and the consistency value of linear semi-infinite inequality systems , 2005, Math. Program..

[124]  Bruno Betrò,et al.  Numerical treatment of Bayesian robustness problems , 2009, Int. J. Approx. Reason..

[125]  James Renegar,et al.  Linear programming, complexity theory and elementary functional analysis , 1995, Math. Program..

[126]  Arkadi Nemirovski,et al.  Robust optimization – methodology and applications , 2002, Math. Program..

[127]  Thomas C. Sharkey Infinite Linear Programs , 2010 .

[128]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[129]  B. Jansen,et al.  Interior-Point Methodology for Linear Programming: Duality, Sensitivity Analysis and Computational Aspects , 1993 .

[130]  D. Goldfarb,et al.  On parametric semidefinite programming , 1999 .

[131]  R. Rockafellar Convex Analysis: (pms-28) , 1970 .

[132]  E. Hannan Linear programming with multiple fuzzy goals , 1981 .

[133]  Rainer Hettich,et al.  Numerische Methoden der Approximation und semi-infiniten Optimierung , 1982 .

[134]  Harvey J. Greenberg,et al.  On the Dimension of the Set of Rim Perturbations for Optimal Partition Invariance , 1998, SIAM J. Optim..

[135]  Marco A. López,et al.  On the stability of closed-convex-valued mappings and the associated boundaries , 2005 .

[136]  A. Hoffman On approximate solutions of systems of linear inequalities , 1952 .

[137]  G. Box Robustness in the Strategy of Scientific Model Building. , 1979 .

[138]  B. Kummer,et al.  Stability Properties of Infima and Optimal Solutions of Parametric Optimization Problems , 1985 .

[139]  B. Bank,et al.  Non-Linear Parametric Optimization , 1983 .

[140]  Harvey J. Greenberg,et al.  Simultaneous Primal-Dual Right-Hand-Side Sensitivity Analysis from a Strictly Complementary Solution of a Linear Program , 1999, SIAM J. Optim..

[141]  Diethard Klatte,et al.  Optimization methods and stability of inclusions in Banach spaces , 2008, Math. Program..

[142]  Miguel A. Goberna,et al.  Sensitivity Analysis in Linear Semi-Infinite Programming via Partitions , 2010, Math. Oper. Res..

[143]  Marco A. López,et al.  Error bounds for the inverse feasible set mapping in linear semi-infinite optimization via a sensitivity dual approach , 2007 .

[144]  Ingvar Claesson,et al.  A semi-infinite quadratic programming algorithm with applications to array pattern synthesis , 2001 .

[145]  Sanjay Mehrotra,et al.  A Cutting-Surface Method for Uncertain Linear Programs with Polyhedral Stochastic Dominance Constraints , 2009, SIAM J. Optim..

[146]  William W. Hogan,et al.  Technical Note - The Continuity of the Perturbation Function of a Convex Program , 1973, Oper. Res..

[147]  V. V. D. de Serio,et al.  Stability of the primal-dual partition in linear semi-infinite programming , 2012 .

[148]  Guohe Huang,et al.  Optimization of regional waste management systems based on inexact semi-infinite programming , 2008 .

[149]  J. M. Cadenas,et al.  A PRIMER ON FUZZY OPTIMIZATION MODELS AND METHODS , 2006 .

[150]  Xi Yin Zheng,et al.  Metric Regularity and Constraint Qualifications for Convex Inequalities on Banach Spaces , 2003, SIAM J. Optim..

[151]  Zhi-Quan Luo,et al.  Complexity analysis of logarithmic barrier decomposition methods for semi-infinite linear programming , 1999 .

[152]  M. R. Davidson Stability of the extreme point set of a polyhedron , 1996 .

[153]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[154]  A. Charnes,et al.  Duality in Semi-Infinite Programs and some Works of Haar and Caratheodory , 1963 .

[155]  K. Kortanek Constructing a perfect duality in infinite programming , 1976 .

[156]  Oliver Stein,et al.  The Adaptive Convexification Algorithm: A Feasible Point Method for Semi-Infinite Programming , 2007, SIAM J. Optim..

[157]  A. D. Ioffe On stability estimates for the regularity property of maps , 2003 .

[158]  M. I. Todorov,et al.  Characterization of the feasible set mapping in one class of semi-infinite optimization problems , 2004 .

[159]  Arkadi Nemirovski,et al.  Robust solutions of Linear Programming problems contaminated with uncertain data , 2000, Math. Program..

[160]  F. Javier Toledo-Moreo,et al.  Calmness of the Argmin Mapping in Linear Semi-Infinite Optimization , 2014, J. Optim. Theory Appl..

[161]  On Parametric Infinite Optimization , 1984 .

[162]  R. Rockafellar,et al.  The radius of metric regularity , 2002 .

[163]  Rainer Hettich,et al.  Directional derivatives for the value-function in semi-infinite programming , 1987, Math. Program..

[164]  Guo H. Huang,et al.  Bivariate interval semi-infinite programming with an application to environmental decision-making analysis , 2011, Eur. J. Oper. Res..

[165]  C. Zalinescu,et al.  Relations between the convexity of a set and the differentiability of its support function , 2013 .

[166]  Jiye Han,et al.  Robust solutions to uncertain linear complementarity problems , 2011 .

[167]  Marco A. López,et al.  Stability Theory for Linear Inequality Systems II: Upper Semicontinuity of the Solution Set Mapping , 1997, SIAM J. Optim..

[168]  Richard Bellman,et al.  Decision-making in fuzzy environment , 2012 .

[169]  Marco A. López,et al.  Metric regularity of semi-infinite constraint systems , 2005, Math. Program..

[170]  Hideo Tanaka,et al.  On Fuzzy-Mathematical Programming , 1973 .

[171]  Miguel A. Goberna,et al.  Linear Semi-infinite Optimization: Recent Advances , 2005 .

[172]  Marco A. López,et al.  On the stability of the optimal value and the optimal set in optimization problems , 2010 .

[173]  New glimpses on convex infinite optimization duality , 2015 .

[174]  Marco A. López,et al.  Stability and Well-Posedness in Linear Semi-Infinite Programming , 1999, SIAM J. Optim..

[175]  Margarita M. L. Rodriguez,et al.  Voronoi cells via linear inequality systems , 2012 .

[176]  R. Poliquin,et al.  Characterizing the Single-Valuedness of Multifunctions , 1997 .

[177]  Rainer Tichatschke,et al.  Connections between generalized, inexact and semi-infinite linear programming , 1989, ZOR Methods Model. Oper. Res..

[178]  M. A. López-Cerdá,et al.  Linear Semi-Infinite Optimization , 1998 .

[179]  Marco A. López,et al.  Metric Regularity in Convex Semi-Infinite Optimization under Canonical Perturbations , 2007, SIAM J. Optim..

[180]  Marco A. López,et al.  Robust linear semi-infinite programming duality under uncertainty , 2013, Math. Program..

[181]  Nguyen Dinh,et al.  Dual Characterizations of Set Containments with Strict Convex Inequalities , 2006, J. Glob. Optim..

[182]  Alberto Ferrer,et al.  Comparative study of RPSALG algorithm for convex semi-infinite programming , 2015, Comput. Optim. Appl..

[183]  D. Klatte Book review: Implicit Functions and Solution Mappings:A View from Variational Analysis. Second Edition. By A. L. Dontchev and R. T. Rockafellar. Springer, New York, 2014 , 2015 .

[184]  Hsiao-Fan Wang,et al.  Linear programming with fuzzy coefficients in constraints , 1999 .

[185]  Gerhard-Wilhelm Weber,et al.  Infinite kernel learning via infinite and semi-infinite programming , 2010, Optim. Methods Softw..

[186]  María J. Cánovas,et al.  Stability of systems of linear equations and inequalities: distance to ill-posedness and metric regularity , 2007 .

[187]  Miguel A. Goberna Post-optimal Analysis of Linear Semi-infinite Programs , 2010 .

[188]  Harvey J. Greenberg,et al.  Matrix Sensitivity Analysis from an Interior Solution of a Linear Program , 1999, INFORMS J. Comput..

[189]  Marco A. López,et al.  New Farkas-type constraint qualifications in convex infinite programming , 2007 .

[190]  Marco A. López,et al.  On the Stability of the Feasible Set in Linear Optimization , 2001 .

[191]  Miguel A. Goberna,et al.  On the Stability of Convex-valued Mappings and Their Relative Boundary and Extreme Points Set Mappings , 2006, SIAM J. Optim..

[192]  G H Huang,et al.  Interval-parameter semi-infinite fuzzy-stochastic mixed-integer programming approach for environmental management under multiple uncertainties. , 2010, Waste management.

[193]  R. Puente Cyclic convex bodies and optimization moment problems , 2007 .

[194]  Marco A. López,et al.  On the Continuity of the Optimal Value in Parametric Linear Optimization: Stable Discretization of the Lagrangian Dual of Nonlinear Problems , 2005 .

[195]  C. Zălinescu,et al.  Stability of constrained optimization problems , 1997 .

[196]  Constantin Zalinescu On the differentiability of the support function , 2013, J. Glob. Optim..

[197]  Boris S. Mordukhovich Coderivative Analysis of Variational Systems , 2004, J. Glob. Optim..

[198]  Maria Fernanda Pimentel,et al.  A Linear Semi-infinite Programming Strategy for Constructing Optimal Wavelet Transforms in Multivariate Calibration Problems , 2003, J. Chem. Inf. Comput. Sci..

[199]  K. O. Kortanek,et al.  Building and Using Dynamic Interest Rate Models , 2001 .

[200]  N. Q. Huy,et al.  Semi-Infinite Optimization under Convex Function Perturbations: Lipschitz Stability , 2011, J. Optim. Theory Appl..

[201]  Jean-Noël Corvellec,et al.  Characterizations of error bounds for lower semicontinuous functions on metric spaces , 2004 .

[202]  Oleksandr Romanko,et al.  Sensitivity analysis in convex quadratic optimization: Simultaneous perturbation of the objective and right-hand-side vectors , 2007, Algorithmic Oper. Res..

[203]  P. Tseng,et al.  Perturbation Analysis of a Condition Number for Linear Systems , 1994, SIAM J. Matrix Anal. Appl..

[204]  S. M. Robinson Stability Theory for Systems of Inequalities. Part I: Linear Systems , 1975 .

[205]  Harvey J. Greenberg,et al.  Stability theorems for infinitely constrained mathematical programs , 1975 .

[206]  F. Javier Toledo-Moreo,et al.  Sufficient conditions for total ill-posedness in linear semi-infinite optimization , 2007, Eur. J. Oper. Res..

[207]  Hui Hu,et al.  Perturbation analysis of global error bounds for systems of linear inequalities , 2000, Math. Program..

[208]  Renato D. C. Monteiro,et al.  A geometric view of parametric linear programming , 1992, Algorithmica.

[209]  M. Goberna,et al.  On the stability of Voronoi cells , 2012 .

[210]  Klaus Glashoff,et al.  Linear Optimization and Approximation , 1983 .

[211]  Hubertus Th. Jongen,et al.  On Stability and Deformation in Semi-Infinite Optimization , 1998 .

[212]  S. Weis,et al.  Polyhedral Voronoi Cells , 2010, 1003.4173.

[213]  Bruno Brosowski,et al.  Parametric semi-infinite linear programming I. continuity of the feasible set and of the optimal value , 1984 .

[214]  Marco A. López,et al.  Simplex-Like Trajectories on Quasi-Polyhedral Sets , 2001, Math. Oper. Res..

[215]  Javier Peña,et al.  Static-arbitrage lower bounds on the prices of basket options via linear programming , 2010 .

[216]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[217]  Marco A. López,et al.  Ill-posedness with respect to the solvability in linear optimization , 2006 .

[218]  C. Zopounidis,et al.  Multicriteria decision systems for financial problems , 2013, TOP.

[219]  Alexander D. Ioffe,et al.  Typical convex program is very well posed , 2005, Math. Program..

[220]  Chong Li,et al.  On Constraint Qualification for an Infinite System of Convex Inequalities in a Banach Space , 2005, SIAM J. Optim..

[221]  Vaithilingam Jeyakumar,et al.  Strong Duality in Robust Convex Programming: Complete Characterizations , 2010, SIAM J. Optim..

[222]  Robert M. Freund,et al.  Some characterizations and properties of the “distance to ill-posedness” and the condition measure of a conic linear system , 1999, Math. Program..

[223]  M. J. Cánovas,et al.  Distance to Ill-Posedness in Linear Optimization via the Fenchel-Legendre Conjugate , 2006 .

[224]  Werner Krabs,et al.  Optimization and approximation , 1979 .

[225]  E. Vercher Portfolios with fuzzy returns: Selection strategies based on semi-infinite programming , 2008 .

[226]  María J. Cánovas,et al.  Regularity modulus of arbitrarily perturbed linear inequality systems , 2008 .

[227]  Teresa León,et al.  On the numerical treatment of linearly constrained semi-infinite optimization problems , 2000, Eur. J. Oper. Res..

[228]  Enriqueta Vercher,et al.  Fuzzy Portfolio Selection Models: A Numerical Study , 2012 .

[229]  Wang Yalin,et al.  Optimization of the Mixture Design for Alumina Sintering with Fuzzy Ingredients , 2009 .

[230]  B. Jansen,et al.  Sensitivity analysis in linear programming: just be careful! , 1997 .