Qualitative Stability Analysis
暂无分享,去创建一个
[1] Gunnar Rätsch,et al. Large Scale Multiple Kernel Learning , 2006, J. Mach. Learn. Res..
[2] Robert M. Freund,et al. Condition number complexity of an elementary algorithm for computing a reliable solution of a conic linear system , 2000, Math. Program..
[3] Edite M. G. P. Fernandes,et al. SIPAMPL: Semi-infinite programming with AMPL , 2004, TOMS.
[4] B. D. Craven,et al. Non-Linear Parametric Optimization (B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammer) , 1984 .
[5] E. Gol′šteĭn,et al. Theory of Convex Programming , 1972 .
[6] M. Goberna,et al. Primal, dual and primal-dual partitions in continuous linear optimization , 2007 .
[7] M. J. Cánovas,et al. Stability of Indices in the KKT Conditions and Metric Regularity in Convex Semi-Infinite Optimization , 2008 .
[8] M. J. Cánovas,et al. On the Lipschitz Modulus of the Argmin Mapping in Linear Semi-Infinite Optimization , 2008 .
[9] F. Toledo. Some results on Lipschitz properties of the optimal values in semi-infinite programming , 2008 .
[10] Hubertus Th. Jongen,et al. Nonlinear optimization: Characterization of structural stability , 1991, J. Glob. Optim..
[11] Olvi L. Mangasarian,et al. Nonlinear Knowledge in Kernel Approximation , 2007, IEEE Transactions on Neural Networks.
[12] Wu Li. The sharp Lipschitz constants for feasible and optimal solutions of a perturbed linear program , 1993 .
[13] Marco A. López,et al. Semi-infinite programming , 2007, Eur. J. Oper. Res..
[14] Jan H. Maruhn,et al. A successive SDP-NSDP approach to a robust optimization problem in finance , 2009, Comput. Optim. Appl..
[15] Teresa León,et al. Optimization under Uncertainty and Linear Semi-Infinite Programming: A Survey , 2001 .
[16] F. Javier Toledo-Moreo,et al. Lipschitz Continuity of the Optimal Value via Bounds on the Optimal Set in Linear Semi-Infinite Optimization , 2006, Math. Oper. Res..
[17] James W. Daniel,et al. Remarks on Perturbations in Linear Inequalities , 1975 .
[18] Miguel A. Goberna,et al. Primal Attainment in Convex Infinite Optimization Duality , 2014 .
[19] Marco A. López,et al. Upper Semicontinuity of the Feasible Set Mapping for Linear Inequality Systems , 2002 .
[20] Rubén Puente,et al. Locally Farkas-Minkowski linear inequality systems , 1999 .
[21] Miguel A. Goberna,et al. On the stability of linear systems with an exact constraint set , 2006, Math. Methods Oper. Res..
[22] T. Terlaky,et al. The Optimal Set and Optimal Partition Approach to Linear and Quadratic Programming , 1996 .
[23] John E. Mitchell,et al. A Semidefinite Programming Based Polyhedral Cut and Price Approach for the Maxcut Problem , 2006, Comput. Optim. Appl..
[24] Marco A. López,et al. LIPSCHITZ MODULUS IN CONVEX SEMI-INFINITE OPTIMIZATION VIA D.C. FUNCTIONS ∗ , 2009 .
[25] Nils Brunsson. My own book review : The Irrational Organization , 2014 .
[26] M. Kojima. Strongly Stable Stationary Solutions in Nonlinear Programs. , 1980 .
[27] Harvey J. Greenberg,et al. The use of the optimal partition in a linear programming solution for postoptimal analysis , 1994, Oper. Res. Lett..
[28] J. Frédéric Bonnans,et al. Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.
[29] M. Goberna,et al. Stability of the Feasible Set Mapping of Linear Systems with an Exact Constraint Set , 2008 .
[30] H. Tuy. Stability property of a system of inequalities , 1977 .
[31] Paul I. Barton,et al. Interval Methods for Semi-Infinite Programs , 2005, Comput. Optim. Appl..
[32] I. K. Altinel,et al. Mission-Based Component Testing for Series Systems , 2011, Ann. Oper. Res..
[33] Miguel A. Goberna,et al. From linear to convex systems: consistency, Farkas' Lemma and applications , 2006 .
[34] Marco A. López,et al. Stability in linear optimization and related topics. A personal tour , 2012 .
[35] Marco A. López,et al. Stability Theory for Linear Inequality Systems , 1996, SIAM J. Matrix Anal. Appl..
[36] Hussein Baher,et al. Analog & digital signal processing , 1990 .
[37] F. Javier Toledo-Moreo,et al. Distance to Solvability/Unsolvability in Linear Optimization , 2006, SIAM J. Optim..
[38] Marco A. López,et al. Lower Semicontinuity of the Feasible Set Mapping of Linear Systems Relative to Their Domains , 2013 .
[39] René Henrion,et al. Regularity and Stability in Nonlinear Semi-Infinite Optimization , 1998 .
[40] Hubertus Th. Jongen,et al. Stability for linearly constrained optimization problems , 1994, Math. Program..
[41] H. Zimmermann. DESCRIPTION AND OPTIMIZATION OF FUZZY SYSTEMS , 1975 .
[42] I. K. Altinel,et al. Optimum component test plans for phased-mission systems , 2008, Eur. J. Oper. Res..
[43] V. N. Vera de Serio,et al. On Metric Regularity and the Boundary of the Feasible Set in Linear Optimization , 2014 .
[44] Teresa León,et al. A DOWNSIDE RISK APPROACH FOR THE PORTFOLIO SELECTION PROBLEM WITH FUZZY RETURNS , 2004 .
[45] S. M. Robinson. Stability Theory for Systems of Inequalities, Part II: Differentiable Nonlinear Systems , 1976 .
[46] Miguel A. Goberna,et al. On the Stability of the Boundary of the Feasible Set in Linear Optimization , 2003 .
[47] Amir Beck,et al. Duality in robust optimization: Primal worst equals dual best , 2009, Oper. Res. Lett..
[48] Marco A. López,et al. On the stability of infinite-dimensional linear inequality systems , 1998 .
[49] M. J. Cánovas,et al. Calmness of the Feasible Set Mapping for Linear Inequality Systems , 2014 .
[50] I. K. Altinel,et al. The design of optimum component test plans for system reliability , 2006, Comput. Stat. Data Anal..
[51] Marco A. López,et al. Isolated calmness of solution mappings in convex semi-infinite optimization☆ , 2009 .
[52] Gerhard-Wilhelm Weber,et al. On numerical optimization theory of infinite kernel learning , 2010, J. Glob. Optim..
[53] Huynh van Ngai,et al. Stability of Error Bounds for Convex Constraint Systems in Banach Spaces , 2010, SIAM J. Optim..
[54] Vaithilingam Jeyakumar,et al. Robust Duality in Parametric Convex Optimization , 2013 .
[55] Marco A. López,et al. Stability in convex semi-infinite programming and rates of convergence of optimal solutions of discretized finite subproblems , 2003 .
[56] R. Boţ,et al. Conjugate Duality in Convex Optimization , 2010 .
[57] D. Dubois,et al. The mean value of a fuzzy number , 1987 .
[58] Miguel A. Goberna,et al. Primal-dual stability in continuous linear optimization , 2008, Math. Program..
[59] Boris S. Mordukhovich,et al. Variational Analysis in Semi-Infinite and Infinite Programming, I: Stability of Linear Inequality Systems of Feasible Solutions , 2009, SIAM J. Optim..
[60] Kristin P. Bennett,et al. The Interplay of Optimization and Machine Learning Research , 2006, J. Mach. Learn. Res..
[61] Miguel A. Goberna,et al. On stable uniqueness in linear semi-infinite optimization , 2012, J. Glob. Optim..
[62] Alexander Shapiro. Directional differentiability of the optimal value function in convex semi-infinite programming , 1995, Math. Program..
[63] Jean-Philippe Vial,et al. Theory and algorithms for linear optimization - an interior point approach , 1998, Wiley-Interscience series in discrete mathematics and optimization.
[64] G. Mora,et al. Stability of Linear Inequality Systems Measured by the Hausdorff Metric , 2000 .
[65] Miguel A. Goberna,et al. Geometric fundamentals of the simplex method in semi-infinite programming , 1988 .
[66] Jan H. Maruhn,et al. Robust Static Super-Replication of Barrier Options , 2009 .
[67] Yong Shi,et al. Recent advances on support vector machines research , 2012 .
[68] Bruno Brosowski,et al. Parametric semi-infinite optimization , 1982 .
[69] A. Ruszczynski,et al. Semi-infinite probabilistic optimization: first-order stochastic dominance constrain , 2004 .
[70] D. Klatte. Nonsmooth equations in optimization , 2002 .
[71] R. Rockafellar,et al. Implicit Functions and Solution Mappings , 2009 .
[72] Ralf Werner,et al. A novel feasible discretization method for linear semi-infinite programming applied to basket option pricing , 2011 .
[73] Etienne E. Kerre,et al. Reasonable properties for the ordering of fuzzy quantities (II) , 2001, Fuzzy Sets Syst..
[74] H. Jongen,et al. On stability and stationary points in nonlinear optimization , 1986, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.
[75] Hui Hu,et al. On approximate solutions of infinite systems of linear inequalities , 1989 .
[76] M. Goberna,et al. Topological stability of linear semi-infinite inequality systems , 1996 .
[77] Roberto Lucchetti,et al. Convexity and well-posed problems , 2006 .
[78] Tomas Gal,et al. Postoptimal Analyses, Parametric Programming, and Related Topics: Degeneracy, Multicriteria Decision Making, Redundancy , 1994 .
[79] Shu-Cherng Fang,et al. A relaxed cutting plane algorithm for solving fuzzy inequality systems , 1999 .
[80] Radko Mesiar,et al. Fuzzy Interval Analysis , 2000 .
[81] E. Yildirim,et al. Unifying Optimal Partition Approach to Sensitivity Analysis in Conic Optimization , 2004 .
[82] Xing Zhang,et al. An interval full-infinite mixed-integer programming method for planning municipal energy systems - A case study of Beijing , 2011 .
[83] A. L. Soyster,et al. Semi-Infinite and Fuzzy Set Programming , 1983 .
[84] Vaithilingam Jeyakumar,et al. Robust solutions to multi-objective linear programs with uncertain data , 2014, Eur. J. Oper. Res..
[85] Marco C. Campi,et al. The Exact Feasibility of Randomized Solutions of Uncertain Convex Programs , 2008, SIAM J. Optim..
[86] Alireza Ghaffari Hadigheh,et al. Sensitivity analysis in linear optimization: Invariant support set intervals , 2006, Eur. J. Oper. Res..
[87] Teresa León,et al. Solving a class of fuzzy linear programs by using semi-infinite programming techniques , 2004, Fuzzy Sets Syst..
[88] Alireza Karimi,et al. Fixed-order H∞ controller design for nonparametric models by convex optimization , 2010, Autom..
[89] Marco A. López,et al. Stability of the Feasible Set Mapping in Convex Semi-Infinite Programming , 2001 .
[90] Allen L. Soyster,et al. Technical Note - Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming , 1973, Oper. Res..
[91] Stability in disjunctive linear optimization I: continuity of the feasible set , 1990 .
[92] J. Parra,et al. Stability of Linear Inequality Systems in a Parametric Setting , 2005 .
[93] S. M. Robinson. Some continuity properties of polyhedral multifunctions , 1981 .
[94] M. Goberna,et al. Generic primal-dual solvability in continuous linear semi-infinite programming , 2008 .
[95] Miguel A. Goberna,et al. On the Stability of the Extreme Point Set in Linear Optimization , 2005, SIAM J. Optim..
[96] Hubertus Th. Jongen,et al. Semi-infinite optimization: Structure and stability of the feasible set , 1990 .
[97] Marco A. López,et al. Penalty and Smoothing Methods for Convex Semi-Infinite Programming , 2009, Math. Oper. Res..
[98] Tamás Terlaky,et al. An Interior Point Constraint Generation Algorithm for Semi-Infinite Optimization with Health-Care Application , 2011, Oper. Res..
[99] A. Bodini,et al. Generalized Moment Theory and Bayesian Robustness Analysis for Hierarchical Mixture Models , 2006 .
[100] Darinka Dentcheva,et al. Optimization with Stochastic Dominance Constraints , 2003, SIAM J. Optim..
[101] Marco A. López,et al. Calmness Modulus of Linear Semi-infinite Programs , 2013, SIAM J. Optim..
[102] Jacques Gauvin. Formulae for the Sensitivity Analysis of Linear Programming Problems , 2001 .
[103] Marco A. López,et al. Distance to ill-posedness for linear inequality systems under block perturbations: convex and infinite-dimensional cases , 2011 .
[104] Constantine Caramanis,et al. Theory and Applications of Robust Optimization , 2010, SIAM Rev..
[105] M. Powell,et al. Approximation theory and methods , 1984 .
[106] W W Cooper,et al. DUALITY, HAAR PROGRAMS, AND FINITE SEQUENCE SPACES. , 1962, Proceedings of the National Academy of Sciences of the United States of America.
[107] J. Renegar. Some perturbation theory for linear programming , 1994, Math. Program..
[108] Guangming Zeng,et al. Identification of Optimal Urban Solid Waste Flow Schemes under Impacts of Energy Prices , 2008 .
[109] Abderrahim Hantoute,et al. Characterization of total ill-posedness in linear semi-infinite optimization , 2008 .
[110] Louis Anthony Cox,et al. Wiley encyclopedia of operations research and management science , 2011 .
[111] Kok Lay Teo,et al. Near-field broadband beamformer design via multidimensional semi-infinite-linear programming techniques , 2003, IEEE Trans. Speech Audio Process..
[112] M. Teboulle,et al. Expected Utility, Penalty Functions, and Duality in Stochastic Nonlinear Programming , 1986 .
[113] Adrian S. Lewis,et al. An extension of the simplex algorithm for semi-infinite linear programming , 1989, Math. Program..
[114] Jian Hu,et al. Sample Average Approximation for Stochastic Dominance Constrained Programs , 2009 .
[115] Daniel A. Jaume,et al. Representability of convex sets by analytical linear inequality systems , 2004 .
[116] Li He,et al. ISMISIP: an inexact stochastic mixed integer linear semi-infinite programming approach for solid waste management and planning under uncertainty , 2008 .
[117] A. Ruszczynski,et al. Portfolio optimization with stochastic dominance constraints , 2006 .
[118] Constantin Zalinescu,et al. Subdifferential Calculus Rules in Convex Analysis: A Unifying Approach Via Pointwise Supremum Functions , 2008, SIAM J. Optim..
[119] Oliver Stein,et al. Solving Semi-Infinite Optimization Problems with Interior Point Techniques , 2003, SIAM J. Control. Optim..
[120] Miguel A. Goberna,et al. Sensitivity analysis in linear semi-infinite programming: Perturbing cost and right-hand-side coefficients , 2007, Eur. J. Oper. Res..
[121] Bruno Betrò,et al. An accelerated central cutting plane algorithm for linear semi-infinite programming , 2004, Math. Program..
[122] Olvi L. Mangasarian,et al. Nonlinear Knowledge-Based Classification , 2008, IEEE Transactions on Neural Networks.
[123] F. Javier Toledo-Moreo,et al. Distance to ill-posedness and the consistency value of linear semi-infinite inequality systems , 2005, Math. Program..
[124] Bruno Betrò,et al. Numerical treatment of Bayesian robustness problems , 2009, Int. J. Approx. Reason..
[125] James Renegar,et al. Linear programming, complexity theory and elementary functional analysis , 1995, Math. Program..
[126] Arkadi Nemirovski,et al. Robust optimization – methodology and applications , 2002, Math. Program..
[127] Thomas C. Sharkey. Infinite Linear Programs , 2010 .
[128] J. Hiriart-Urruty,et al. Convex analysis and minimization algorithms , 1993 .
[129] B. Jansen,et al. Interior-Point Methodology for Linear Programming: Duality, Sensitivity Analysis and Computational Aspects , 1993 .
[130] D. Goldfarb,et al. On parametric semidefinite programming , 1999 .
[131] R. Rockafellar. Convex Analysis: (pms-28) , 1970 .
[132] E. Hannan. Linear programming with multiple fuzzy goals , 1981 .
[133] Rainer Hettich,et al. Numerische Methoden der Approximation und semi-infiniten Optimierung , 1982 .
[134] Harvey J. Greenberg,et al. On the Dimension of the Set of Rim Perturbations for Optimal Partition Invariance , 1998, SIAM J. Optim..
[135] Marco A. López,et al. On the stability of closed-convex-valued mappings and the associated boundaries , 2005 .
[136] A. Hoffman. On approximate solutions of systems of linear inequalities , 1952 .
[137] G. Box. Robustness in the Strategy of Scientific Model Building. , 1979 .
[138] B. Kummer,et al. Stability Properties of Infima and Optimal Solutions of Parametric Optimization Problems , 1985 .
[139] B. Bank,et al. Non-Linear Parametric Optimization , 1983 .
[140] Harvey J. Greenberg,et al. Simultaneous Primal-Dual Right-Hand-Side Sensitivity Analysis from a Strictly Complementary Solution of a Linear Program , 1999, SIAM J. Optim..
[141] Diethard Klatte,et al. Optimization methods and stability of inclusions in Banach spaces , 2008, Math. Program..
[142] Miguel A. Goberna,et al. Sensitivity Analysis in Linear Semi-Infinite Programming via Partitions , 2010, Math. Oper. Res..
[143] Marco A. López,et al. Error bounds for the inverse feasible set mapping in linear semi-infinite optimization via a sensitivity dual approach , 2007 .
[144] Ingvar Claesson,et al. A semi-infinite quadratic programming algorithm with applications to array pattern synthesis , 2001 .
[145] Sanjay Mehrotra,et al. A Cutting-Surface Method for Uncertain Linear Programs with Polyhedral Stochastic Dominance Constraints , 2009, SIAM J. Optim..
[146] William W. Hogan,et al. Technical Note - The Continuity of the Perturbation Function of a Convex Program , 1973, Oper. Res..
[147] V. V. D. de Serio,et al. Stability of the primal-dual partition in linear semi-infinite programming , 2012 .
[148] Guohe Huang,et al. Optimization of regional waste management systems based on inexact semi-infinite programming , 2008 .
[149] J. M. Cadenas,et al. A PRIMER ON FUZZY OPTIMIZATION MODELS AND METHODS , 2006 .
[150] Xi Yin Zheng,et al. Metric Regularity and Constraint Qualifications for Convex Inequalities on Banach Spaces , 2003, SIAM J. Optim..
[151] Zhi-Quan Luo,et al. Complexity analysis of logarithmic barrier decomposition methods for semi-infinite linear programming , 1999 .
[152] M. R. Davidson. Stability of the extreme point set of a polyhedron , 1996 .
[153] R. Rockafellar,et al. Optimization of conditional value-at risk , 2000 .
[154] A. Charnes,et al. Duality in Semi-Infinite Programs and some Works of Haar and Caratheodory , 1963 .
[155] K. Kortanek. Constructing a perfect duality in infinite programming , 1976 .
[156] Oliver Stein,et al. The Adaptive Convexification Algorithm: A Feasible Point Method for Semi-Infinite Programming , 2007, SIAM J. Optim..
[157] A. D. Ioffe. On stability estimates for the regularity property of maps , 2003 .
[158] M. I. Todorov,et al. Characterization of the feasible set mapping in one class of semi-infinite optimization problems , 2004 .
[159] Arkadi Nemirovski,et al. Robust solutions of Linear Programming problems contaminated with uncertain data , 2000, Math. Program..
[160] F. Javier Toledo-Moreo,et al. Calmness of the Argmin Mapping in Linear Semi-Infinite Optimization , 2014, J. Optim. Theory Appl..
[161] On Parametric Infinite Optimization , 1984 .
[162] R. Rockafellar,et al. The radius of metric regularity , 2002 .
[163] Rainer Hettich,et al. Directional derivatives for the value-function in semi-infinite programming , 1987, Math. Program..
[164] Guo H. Huang,et al. Bivariate interval semi-infinite programming with an application to environmental decision-making analysis , 2011, Eur. J. Oper. Res..
[165] C. Zalinescu,et al. Relations between the convexity of a set and the differentiability of its support function , 2013 .
[166] Jiye Han,et al. Robust solutions to uncertain linear complementarity problems , 2011 .
[167] Marco A. López,et al. Stability Theory for Linear Inequality Systems II: Upper Semicontinuity of the Solution Set Mapping , 1997, SIAM J. Optim..
[168] Richard Bellman,et al. Decision-making in fuzzy environment , 2012 .
[169] Marco A. López,et al. Metric regularity of semi-infinite constraint systems , 2005, Math. Program..
[170] Hideo Tanaka,et al. On Fuzzy-Mathematical Programming , 1973 .
[171] Miguel A. Goberna,et al. Linear Semi-infinite Optimization: Recent Advances , 2005 .
[172] Marco A. López,et al. On the stability of the optimal value and the optimal set in optimization problems , 2010 .
[173] New glimpses on convex infinite optimization duality , 2015 .
[174] Marco A. López,et al. Stability and Well-Posedness in Linear Semi-Infinite Programming , 1999, SIAM J. Optim..
[175] Margarita M. L. Rodriguez,et al. Voronoi cells via linear inequality systems , 2012 .
[176] R. Poliquin,et al. Characterizing the Single-Valuedness of Multifunctions , 1997 .
[177] Rainer Tichatschke,et al. Connections between generalized, inexact and semi-infinite linear programming , 1989, ZOR Methods Model. Oper. Res..
[178] M. A. López-Cerdá,et al. Linear Semi-Infinite Optimization , 1998 .
[179] Marco A. López,et al. Metric Regularity in Convex Semi-Infinite Optimization under Canonical Perturbations , 2007, SIAM J. Optim..
[180] Marco A. López,et al. Robust linear semi-infinite programming duality under uncertainty , 2013, Math. Program..
[181] Nguyen Dinh,et al. Dual Characterizations of Set Containments with Strict Convex Inequalities , 2006, J. Glob. Optim..
[182] Alberto Ferrer,et al. Comparative study of RPSALG algorithm for convex semi-infinite programming , 2015, Comput. Optim. Appl..
[183] D. Klatte. Book review: Implicit Functions and Solution Mappings:A View from Variational Analysis. Second Edition. By A. L. Dontchev and R. T. Rockafellar. Springer, New York, 2014 , 2015 .
[184] Hsiao-Fan Wang,et al. Linear programming with fuzzy coefficients in constraints , 1999 .
[185] Gerhard-Wilhelm Weber,et al. Infinite kernel learning via infinite and semi-infinite programming , 2010, Optim. Methods Softw..
[186] María J. Cánovas,et al. Stability of systems of linear equations and inequalities: distance to ill-posedness and metric regularity , 2007 .
[187] Miguel A. Goberna. Post-optimal Analysis of Linear Semi-infinite Programs , 2010 .
[188] Harvey J. Greenberg,et al. Matrix Sensitivity Analysis from an Interior Solution of a Linear Program , 1999, INFORMS J. Comput..
[189] Marco A. López,et al. New Farkas-type constraint qualifications in convex infinite programming , 2007 .
[190] Marco A. López,et al. On the Stability of the Feasible Set in Linear Optimization , 2001 .
[191] Miguel A. Goberna,et al. On the Stability of Convex-valued Mappings and Their Relative Boundary and Extreme Points Set Mappings , 2006, SIAM J. Optim..
[192] G H Huang,et al. Interval-parameter semi-infinite fuzzy-stochastic mixed-integer programming approach for environmental management under multiple uncertainties. , 2010, Waste management.
[193] R. Puente. Cyclic convex bodies and optimization moment problems , 2007 .
[194] Marco A. López,et al. On the Continuity of the Optimal Value in Parametric Linear Optimization: Stable Discretization of the Lagrangian Dual of Nonlinear Problems , 2005 .
[195] C. Zălinescu,et al. Stability of constrained optimization problems , 1997 .
[196] Constantin Zalinescu. On the differentiability of the support function , 2013, J. Glob. Optim..
[197] Boris S. Mordukhovich. Coderivative Analysis of Variational Systems , 2004, J. Glob. Optim..
[198] Maria Fernanda Pimentel,et al. A Linear Semi-infinite Programming Strategy for Constructing Optimal Wavelet Transforms in Multivariate Calibration Problems , 2003, J. Chem. Inf. Comput. Sci..
[199] K. O. Kortanek,et al. Building and Using Dynamic Interest Rate Models , 2001 .
[200] N. Q. Huy,et al. Semi-Infinite Optimization under Convex Function Perturbations: Lipschitz Stability , 2011, J. Optim. Theory Appl..
[201] Jean-Noël Corvellec,et al. Characterizations of error bounds for lower semicontinuous functions on metric spaces , 2004 .
[202] Oleksandr Romanko,et al. Sensitivity analysis in convex quadratic optimization: Simultaneous perturbation of the objective and right-hand-side vectors , 2007, Algorithmic Oper. Res..
[203] P. Tseng,et al. Perturbation Analysis of a Condition Number for Linear Systems , 1994, SIAM J. Matrix Anal. Appl..
[204] S. M. Robinson. Stability Theory for Systems of Inequalities. Part I: Linear Systems , 1975 .
[205] Harvey J. Greenberg,et al. Stability theorems for infinitely constrained mathematical programs , 1975 .
[206] F. Javier Toledo-Moreo,et al. Sufficient conditions for total ill-posedness in linear semi-infinite optimization , 2007, Eur. J. Oper. Res..
[207] Hui Hu,et al. Perturbation analysis of global error bounds for systems of linear inequalities , 2000, Math. Program..
[208] Renato D. C. Monteiro,et al. A geometric view of parametric linear programming , 1992, Algorithmica.
[209] M. Goberna,et al. On the stability of Voronoi cells , 2012 .
[210] Klaus Glashoff,et al. Linear Optimization and Approximation , 1983 .
[211] Hubertus Th. Jongen,et al. On Stability and Deformation in Semi-Infinite Optimization , 1998 .
[212] S. Weis,et al. Polyhedral Voronoi Cells , 2010, 1003.4173.
[213] Bruno Brosowski,et al. Parametric semi-infinite linear programming I. continuity of the feasible set and of the optimal value , 1984 .
[214] Marco A. López,et al. Simplex-Like Trajectories on Quasi-Polyhedral Sets , 2001, Math. Oper. Res..
[215] Javier Peña,et al. Static-arbitrage lower bounds on the prices of basket options via linear programming , 2010 .
[216] Alexander Shapiro,et al. Lectures on Stochastic Programming: Modeling and Theory , 2009 .
[217] Marco A. López,et al. Ill-posedness with respect to the solvability in linear optimization , 2006 .
[218] C. Zopounidis,et al. Multicriteria decision systems for financial problems , 2013, TOP.
[219] Alexander D. Ioffe,et al. Typical convex program is very well posed , 2005, Math. Program..
[220] Chong Li,et al. On Constraint Qualification for an Infinite System of Convex Inequalities in a Banach Space , 2005, SIAM J. Optim..
[221] Vaithilingam Jeyakumar,et al. Strong Duality in Robust Convex Programming: Complete Characterizations , 2010, SIAM J. Optim..
[222] Robert M. Freund,et al. Some characterizations and properties of the “distance to ill-posedness” and the condition measure of a conic linear system , 1999, Math. Program..
[223] M. J. Cánovas,et al. Distance to Ill-Posedness in Linear Optimization via the Fenchel-Legendre Conjugate , 2006 .
[224] Werner Krabs,et al. Optimization and approximation , 1979 .
[225] E. Vercher. Portfolios with fuzzy returns: Selection strategies based on semi-infinite programming , 2008 .
[226] María J. Cánovas,et al. Regularity modulus of arbitrarily perturbed linear inequality systems , 2008 .
[227] Teresa León,et al. On the numerical treatment of linearly constrained semi-infinite optimization problems , 2000, Eur. J. Oper. Res..
[228] Enriqueta Vercher,et al. Fuzzy Portfolio Selection Models: A Numerical Study , 2012 .
[229] Wang Yalin,et al. Optimization of the Mixture Design for Alumina Sintering with Fuzzy Ingredients , 2009 .
[230] B. Jansen,et al. Sensitivity analysis in linear programming: just be careful! , 1997 .