Performance of the Cygnus x-ray source

Cygnus is a radiographic x-ray source developed for support of the Sub-Critical Experiments Program at the Nevada Test Site. Major requirements for this application are: a dramatically reduced spot size as compared to both Government Laboratory and existing commercial alternatives, layout flexibility, and reliability. Cygnus incorporates proven pulsed power technology (Marx Generator, Pulse Forming Line, Water Transmission Line, and Inductive Voltage Adder sub-components) to drive a high voltage vacuum diode. In the case of Cygnus, a relatively new approach (the rod pinch diode [1]) is employed to achieve a small source diameter. Design specifications are: 2.25 MeV endpoint energy, < 1 mm source diameter, and >3 rads dose at 1 meter. The pulsed power and system architecture design plan has been previously presented [2]. The first set of Cygnus shots were geared to verification of electrical parameters and, therefore, used a large area diode configuration offering increased shot rate as compared to that of the rod pinch diode. In this paper we present results of initial rod pinch operation in terms of electrical and radiation parameters.

[1]  I. Smith,et al.  Design of a driver for the Cygnus X-ray source , 2001, PPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. Digest of Papers (Cat. No.01CH37251).