Making better use of the crowd

This survey provides a comprehensive overview of the landscape of crowdsourcing research, targeted at the machine learning community. We begin with an overview of the ways in which crowdsourcing ca...

[1]  A. P. Dawid,et al.  Maximum Likelihood Estimation of Observer Error‐Rates Using the EM Algorithm , 1979 .

[2]  Robin Hanson,et al.  Combinatorial Information Market Design , 2003, Inf. Syst. Frontiers.

[3]  Brendan T. O'Connor,et al.  Cheap and Fast – But is it Good? Evaluating Non-Expert Annotations for Natural Language Tasks , 2008, EMNLP.

[4]  Laura A. Dabbish,et al.  Designing games with a purpose , 2008, CACM.

[5]  Lance Fortnow,et al.  Complexity of combinatorial market makers , 2008, EC '08.

[6]  Panagiotis G. Ipeirotis,et al.  Get another label? improving data quality and data mining using multiple, noisy labelers , 2008, KDD.

[7]  Chris Callison-Burch,et al.  Fast, Cheap, and Creative: Evaluating Translation Quality Using Amazon’s Mechanical Turk , 2009, EMNLP.

[8]  Duncan J. Watts,et al.  Financial incentives and the "performance of crowds" , 2009, HCOMP '09.

[9]  David G. Rand,et al.  The online laboratory: conducting experiments in a real labor market , 2010, ArXiv.

[10]  Michael S. Bernstein,et al.  Soylent: a word processor with a crowd inside , 2010, UIST.

[11]  Panagiotis G. Ipeirotis,et al.  Running Experiments on Amazon Mechanical Turk , 2010, Judgment and Decision Making.

[12]  Pietro Perona,et al.  The Multidimensional Wisdom of Crowds , 2010, NIPS.

[13]  Gerardo Hermosillo,et al.  Learning From Crowds , 2010, J. Mach. Learn. Res..

[14]  R. Preston McAfee,et al.  Who moderates the moderators?: crowdsourcing abuse detection in user-generated content , 2011, EC '11.

[15]  Daniel G. Goldstein,et al.  Honesty in an Online Labor Market , 2011, Human Computation.

[16]  Aniket Kittur,et al.  An Assessment of Intrinsic and Extrinsic Motivation on Task Performance in Crowdsourcing Markets , 2011, ICWSM.

[17]  Adam Tauman Kalai,et al.  Adaptively Learning the Crowd Kernel , 2011, ICML.

[18]  Christopher G. Harris You're Hired! An Examination of Crowdsourcing Incentive Models in Human Resource Tasks , 2011 .

[19]  Aaron D. Shaw,et al.  Designing incentives for inexpert human raters , 2011, CSCW.

[20]  Aniket Kittur,et al.  CrowdForge: crowdsourcing complex work , 2011, UIST.

[21]  Devi Parikh Human-Debugging of Machines , 2011 .

[22]  Michael D. Buhrmester,et al.  Amazon's Mechanical Turk , 2011, Perspectives on psychological science : a journal of the Association for Psychological Science.

[23]  Devavrat Shah,et al.  Iterative Learning for Reliable Crowdsourcing Systems , 2011, NIPS.

[24]  Jian Peng,et al.  Variational Inference for Crowdsourcing , 2012, NIPS.

[25]  Dana Chandler,et al.  Breaking Monotony with Meaning: Motivation in Crowdsourcing Markets , 2012, ArXiv.

[26]  Walter S. Lasecki,et al.  A readability evaluation of real-time crowd captions in the classroom , 2012, ASSETS '12.

[27]  Omar Alonso,et al.  Implementing crowdsourcing-based relevance experimentation: an industrial perspective , 2013, Information Retrieval.

[28]  James Hays,et al.  SUN attribute database: Discovering, annotating, and recognizing scene attributes , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  John C. Platt,et al.  Learning from the Wisdom of Crowds by Minimax Entropy , 2012, NIPS.

[30]  Walter S. Lasecki,et al.  Online quality control for real-time crowd captioning , 2012, ASSETS '12.

[31]  Walter S. Lasecki,et al.  Real-time captioning by groups of non-experts , 2012, UIST.

[32]  Siddharth Suri,et al.  Conducting behavioral research on Amazon’s Mechanical Turk , 2010, Behavior research methods.

[33]  Walter S. Lasecki,et al.  Warping time for more effective real-time crowdsourcing , 2013, CHI.

[34]  Yu-An Sun,et al.  The Effects of Performance-Contingent Financial Incentives in Online Labor Markets , 2013, AAAI.

[35]  Sanja Fidler,et al.  Analyzing Semantic Segmentation Using Hybrid Human-Machine CRFs , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[36]  R. Preston McAfee,et al.  The cost of annoying ads , 2013, WWW '13.

[37]  Daniel Gildea,et al.  Text Alignment for Real-Time Crowd Captioning , 2013, NAACL.

[38]  Chen Xu,et al.  The SUN Attribute Database: Beyond Categories for Deeper Scene Understanding , 2014, International Journal of Computer Vision.

[39]  Michael S. Bernstein,et al.  Mechanical Turk is Not Anonymous , 2013 .

[40]  Chien-Ju Ho,et al.  Adaptive Task Assignment for Crowdsourced Classification , 2013, ICML.

[41]  Jennifer Wortman Vaughan,et al.  Efficient Market Making via Convex Optimization, and a Connection to Online Learning , 2013, TEAC.

[42]  Lydia B. Chilton,et al.  Cobi: a community-informed conference scheduling tool , 2013, UIST.

[43]  Quentin Pleple,et al.  Interactive Topic Modeling , 2013 .

[44]  Lydia B. Chilton,et al.  Community Clustering: Leveraging an Academic Crowd to Form Coherent Conference Sessions , 2013, HCOMP.

[45]  Yu-An Sun,et al.  Monetary Interventions in Crowdsourcing Task Switching , 2014, HCOMP.

[46]  Jaime Teevan,et al.  Selfsourcing personal tasks , 2014, CHI Extended Abstracts.

[47]  Jacki O'Neill,et al.  Turk-Life in India , 2014, GROUP.

[48]  Lydia B. Chilton,et al.  Frenzy: collaborative data organization for creating conference sessions , 2014, CHI.

[49]  R. Preston McAfee,et al.  The Economic and Cognitive Costs of Annoying Display Advertisements , 2014 .

[50]  Xi Chen,et al.  Spectral Methods Meet EM: A Provably Optimal Algorithm for Crowdsourcing , 2014, J. Mach. Learn. Res..

[51]  Devavrat Shah,et al.  Budget-Optimal Task Allocation for Reliable Crowdsourcing Systems , 2011, Oper. Res..

[52]  Michael S. Bernstein,et al.  We Are Dynamo: Overcoming Stalling and Friction in Collective Action for Crowd Workers , 2015, CHI.

[53]  Leib Litman,et al.  The relationship between motivation, monetary compensation, and data quality among US- and India-based workers on Mechanical Turk , 2014, Behavior Research Methods.

[54]  Adam Tauman Kalai,et al.  Crowdsourcing Feature Discovery via Adaptively Chosen Comparisons , 2015, HCOMP.

[55]  Aleksandrs Slivkins,et al.  Incentivizing High Quality Crowdwork , 2015 .

[56]  The Dynamics of Micro-Task Crowdsourcing: The Case of Amazon MTurk , 2015, WWW.

[57]  Ben R. Newell,et al.  The average laboratory samples a population of 7,300 Amazon Mechanical Turk workers , 2015, Judgment and Decision Making.

[58]  Matthew Lease,et al.  Beyond Mechanical Turk: An Analysis of Paid Crowd Work Platforms , 2015 .

[59]  Elena Paslaru Bontas Simperl,et al.  Improving Paid Microtasks through Gamification and Adaptive Furtherance Incentives , 2015, WWW.

[60]  Krzysztof Z. Gajos,et al.  Curiosity Killed the Cat, but Makes Crowdwork Better , 2016, CHI.

[61]  Alessandro Acquisti,et al.  Beyond the Turk: An Empirical Comparison of Alternative Platforms for Crowdsourcing Online Behavioral Research , 2016 .

[62]  Blase Ur,et al.  Do Users' Perceptions of Password Security Match Reality? , 2016, CHI.

[63]  Ece Kamar,et al.  Directions in Hybrid Intelligence: Complementing AI Systems with Human Intelligence , 2016, IJCAI.

[64]  Ashish Khetan,et al.  Achieving budget-optimality with adaptive schemes in crowdsourcing , 2016, NIPS.

[65]  Li Fei-Fei,et al.  Crowdsourcing in Computer Vision , 2016, Found. Trends Comput. Graph. Vis..

[66]  Long-run cooperation , 2016 .

[67]  Daniel G. Goldstein,et al.  Improving Comprehension of Numbers in the News , 2016, CHI.

[68]  Mary L. Gray,et al.  The Crowd is a Collaborative Network , 2016, CSCW.

[69]  Jaime Teevan,et al.  Supporting Collaborative Writing with Microtasks , 2016, CHI.

[70]  Sanja Fidler,et al.  Human-Machine CRFs for Identifying Bottlenecks in Scene Understanding , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[71]  Tim Roughgarden,et al.  Mathematical foundations for social computing , 2016, Commun. ACM.

[72]  Ming Yin,et al.  The Communication Network Within the Crowd , 2016, WWW.

[73]  Michael S. Bernstein,et al.  Mechanical Novel: Crowdsourcing Complex Work through Reflection and Revision , 2016, CSCW.

[74]  Lionel P. Robert,et al.  When Does More Money Work? Examining the Role of Perceived Fairness in Pay on the Performance Quality of Crowdworkers , 2017, ICWSM.

[75]  Joseph Goodman,et al.  Crowdsourcing Consumer Research , 2017 .

[76]  Eric Horvitz,et al.  On Human Intellect and Machine Failures: Troubleshooting Integrative Machine Learning Systems , 2016, AAAI.

[77]  Jaime Teevan,et al.  Communicating Context to the Crowd for Complex Writing Tasks , 2017, CSCW.

[78]  Jesse Chandler,et al.  Lie for a Dime , 2017 .

[79]  Joel Huber,et al.  Character Misrepresentation by Amazon Turk Workers : Assessment and Solutions CONTRIBUTION STATEMENT Consumer researchers conducting studies with Amazon Mechanical Turk Workers , 2018 .