Uncertainty Bounds for Multivariate Machine Learning Predictions on High-Strain Brittle Fracture

[1]  Yasuo Yabe,et al.  International Journal of Rock Mechanics and Mining Sciences , 1964, Nature.

[2]  D. Owen,et al.  A combined finite‐discrete element method in transient dynamics of fracturing solids , 1995 .

[3]  Meyer,et al.  Crack interaction modelling , 2000 .

[4]  N. Odling,et al.  Scaling of fracture systems in geological media , 2001 .

[5]  A. Munjiza The Combined Finite-Discrete Element Method , 2004 .

[6]  Antonio Munjiza,et al.  Numerical comparison of some explicit time integration schemes used in DEM, FEM/DEM and molecular dynamics , 2004 .

[7]  Julia Kastner,et al.  Introduction to Robust Estimation and Hypothesis Testing , 2005 .

[8]  K. T. Ramesh,et al.  An interacting micro-crack damage model for failure of brittle materials under compression , 2008 .

[9]  Esteban Rougier,et al.  Computational Mechanics of Discontinua , 2011 .

[10]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[11]  M. B. Prime,et al.  Characterization of shocked beryllium , 2012 .

[12]  George T. Gray,et al.  Effect of shock wave duration on dynamic failure of tungsten heavy alloy , 2013 .

[13]  Shan Suthaharan,et al.  Big data classification: problems and challenges in network intrusion prediction with machine learning , 2014, PERV.

[14]  Antonio Munjiza,et al.  Validation of a three-dimensional Finite-Discrete Element Method using experimental results of the Split Hopkinson Pressure Bar test , 2014 .

[15]  Ralph C. Smith,et al.  Uncertainty Quantification: Theory, Implementation, and Applications , 2013 .

[16]  A. Munjiza,et al.  Large Strain Finite Element Method: A Practical Course , 2015 .

[17]  Hari S. Viswanathan,et al.  Fracture-permeability behavior of shale , 2015 .

[18]  Andrzej Cichocki,et al.  Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions , 2016, Found. Trends Mach. Learn..

[19]  Zoubin Ghahramani,et al.  Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning , 2015, ICML.

[20]  Charles Blundell,et al.  Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles , 2016, NIPS.

[21]  Paris Perdikaris,et al.  Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations , 2017, ArXiv.

[22]  Alex Kendall,et al.  What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? , 2017, NIPS.

[23]  Hari S. Viswanathan,et al.  Predictive modeling of dynamic fracture growth in brittle materials with machine learning , 2018, Computational Materials Science.

[24]  R. Langridge,et al.  Earthquake Damage Patterns Resolve Complex Rupture Processes , 2018, Geophysical Research Letters.

[25]  Satish Karra,et al.  Quantifying Topological Uncertainty in Fractured Systems using Graph Theory and Machine Learning , 2018, Scientific Reports.

[26]  Nicholas Zabaras,et al.  Bayesian Deep Convolutional Encoder-Decoder Networks for Surrogate Modeling and Uncertainty Quantification , 2018, J. Comput. Phys..

[27]  Ahmed H. Elsheikh,et al.  A machine learning approach for efficient uncertainty quantification using multiscale methods , 2017, J. Comput. Phys..

[28]  M. Marques,et al.  Recent advances and applications of machine learning in solid-state materials science , 2019, npj Computational Materials.

[29]  S. R. Ignatovich,et al.  Power Law of Crack Length Distribution in the Multiple Damage Process , 2019, Strength of Materials.

[30]  Bryan A. Moore,et al.  Reduced-order modeling through machine learning and graph-theoretic approaches for brittle fracture applications , 2019, Computational Materials Science.

[31]  Antonio Munjiza,et al.  Simulation of Fracture Coalescence in Granite via the Combined Finite–Discrete Element Method , 2018, Rock Mechanics and Rock Engineering.

[32]  George Em Karniadakis,et al.  Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems , 2018, J. Comput. Phys..

[33]  Gowri Srinivasan,et al.  The combined plastic and discrete fracture deformation framework for finite‐discrete element methods , 2019, International Journal for Numerical Methods in Engineering.

[34]  Hari S. Viswanathan,et al.  Learning to fail: Predicting fracture evolution in brittle materials using recurrent graph convolutional neural networks , 2018, Computational Materials Science.

[35]  Jianping Wu,et al.  Bridging machine learning and computer network research: a survey , 2018, CCF Trans. Netw..

[36]  Tanmoy Bhattacharya,et al.  The need for uncertainty quantification in machine-assisted medical decision making , 2019, Nat. Mach. Intell..

[37]  Jui-Chan Huang,et al.  Application and comparison of several machine learning algorithms and their integration models in regression problems , 2019, Neural Computing and Applications.

[38]  Hari S. Viswanathan,et al.  Statistically informed upscaling of damage evolution in brittle materials , 2019, Theoretical and Applied Fracture Mechanics.

[39]  L. Graham‐Brady,et al.  A micromechanics based model to predict micro-crack coalescence in brittle materials under dynamic compression , 2019, Engineering Fracture Mechanics.

[40]  Gowri Srinivasan,et al.  Scale bridging damage model for quasi-brittle metals informed with crack evolution statistics , 2020 .

[41]  Gowri Srinivasan,et al.  Mesoscale informed parameter estimation through machine learning: A case-study in fracture modeling , 2020, J. Comput. Phys..

[42]  Yalchin Efendiev,et al.  Deep Multiscale Model Learning , 2018, J. Comput. Phys..

[43]  R. Haftka,et al.  Accelerating high-strain continuum-scale brittle fracture simulations with machine learning , 2021 .

[44]  Cristina Garcia-Cardona,et al.  UNCERTAINTY QUANTIFICATION FOR DEEP LEARNING REGRESSION MODELS IN THE LOW DATA LIMIT , 2021, 4th International Conference on Uncertainty Quantification in Computational Sciences and Engineering.