Capillary suspensions as bene fi cial formulation concept for high energy density Li-ion battery electrodes

Adjusting the electrode microstructure is achievable using capillary

[1]  T. Masese,et al.  Ionic Conduction in Lithium Ion Battery Composite Electrode Governs Cross-sectional Reaction Distribution , 2016, Scientific Reports.

[2]  B. Braunschweig,et al.  Interaction between Polymeric Additives and Secondary Fluids in Capillary Suspensions. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[3]  Peter Bieker,et al.  Was braucht man für eine Super-Batterie? , 2016 .

[4]  Johannes Maurath,et al.  Highly Porous Materials with Unique Mechanical Properties from Smart Capillary Suspensions , 2016, Advanced materials.

[5]  Hubert A. Gasteiger,et al.  Tortuosity Determination of Battery Electrodes and Separators by Impedance Spectroscopy , 2016 .

[6]  Johannes Maurath,et al.  Fabrication of highly porous glass filters using capillary suspension processing , 2015 .

[7]  U. Paik,et al.  Lithium salt of carboxymethyl cellulose as an aqueous binder for thick graphite electrode in lithium ion batteries , 2015, Macromolecular Research.

[8]  Norbert Willenbacher,et al.  Einflüsse der mechanischen Verfahrenstechnik auf die Herstellung von Elektroden für Lithium‐Ionen‐Batterien , 2015 .

[9]  Tsuyoshi Sasaki,et al.  Impedance Spectroscopy Characterization of Porous Electrodes under Different Electrode Thickness Using a Symmetric Cell for High-Performance Lithium-Ion Batteries , 2015 .

[10]  K. M. Abraham,et al.  Prospects and Limits of Energy Storage in Batteries. , 2015, The journal of physical chemistry letters.

[11]  M. Winter,et al.  Influence of Thermal Treated Carbon Black Conductive Additive on the Performance of High Voltage Spinel Cr-Doped LiNi0.5Mn1.5O4 Composite Cathode Electrode , 2015 .

[12]  N. Willenbacher,et al.  Micro Structural Investigations and Mechanical Properties of Macro Porous Ceramic Materials from Capillary Suspensions , 2014 .

[13]  B. Bitsch,et al.  A novel slurry concept for the fabrication of lithium-ion battery electrodes with beneficial properties , 2014 .

[14]  E. Koos Capillary suspensions: Particle networks formed through the capillary force. , 2014, Current opinion in colloid & interface science.

[15]  N. Willenbacher,et al.  Restructuring and aging in a capillary suspension , 2014, Rheologica Acta.

[16]  Shu-Lei Chou,et al.  Small things make a big difference: binder effects on the performance of Li and Na batteries. , 2014, Physical Chemistry, Chemical Physics - PCCP.

[17]  Wilhelm Pfleging,et al.  Laser-printing and femtosecond-laser structuring of LiMn2O4 composite cathodes for Li-ion microbatteries , 2014 .

[18]  K. Maute,et al.  A design optimization methodology for Li+ batteries , 2014 .

[19]  M. Winter,et al.  anion intercalation into graphitized carbon blacks and its influence on high voltage lithium ion batteries , 2014 .

[20]  M. Winter,et al.  Understanding the influence of conductive carbon additives surface area on the rate performance of LiFePO4 cathodes for lithium ion batteries , 2013 .

[21]  Jörg Illig,et al.  Understanding the impedance spectrum of 18650 LiFePO4-cells , 2013 .

[22]  Paul V Braun,et al.  High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes , 2013, Nature Communications.

[23]  Wolfgang Haselrieder,et al.  Impact of the Calendering Process on the Interfacial Structure and the Related Electrochemical Performance of Secondary Lithium-Ion Batteries , 2013 .

[24]  Jens Leker,et al.  Current research trends and prospects among the various materials and designs used in lithium-based batteries , 2013, Journal of Applied Electrochemistry.

[25]  Tae Young Kim,et al.  Model Prediction and Experiments for the Electrode Design Optimization of LiFePO4/Graphite Electrodes in High Capacity Lithium-ion Batteries , 2013 .

[26]  N. Willenbacher,et al.  Ceramic Capillary Suspensions: Novel Processing Route for Macroporous Ceramic Materials , 2012 .

[27]  K. Maute,et al.  Multiscale design optimization of lithium ion batteries using adjoint sensitivity analysis , 2012 .

[28]  Jianjun Li,et al.  The effect of local current density on electrode design for lithium-ion batteries , 2012 .

[29]  Xiangyun Song,et al.  A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes , 2012 .

[30]  Y. Ukyo,et al.  Theoretical and Experimental Analysis of Porous Electrodes for Lithium-Ion Batteries by Electrochemical Impedance Spectroscopy Using a Symmetric Cell , 2012 .

[31]  Young‐Jun Kim,et al.  Prospective materials and applications for Li secondary batteries , 2011 .

[32]  D. Goers,et al.  Development of carbon conductive additives for advanced lithium ion batteries , 2011 .

[33]  N. Willenbacher,et al.  Capillary Forces in Suspension Rheology , 2011, Science.

[34]  Ann Marie Sastry,et al.  A review of conduction phenomena in Li-ion batteries , 2010 .

[35]  M. Winter,et al.  Low Cost, Environmentally Benign Binders for Lithium-Ion Batteries , 2010 .

[36]  Kurt Maute,et al.  Numerical modeling of electrochemical-mechanical interactions in lithium polymer batteries , 2009 .

[37]  Claus Daniel,et al.  Materials and processing for lithium-ion batteries , 2008 .

[38]  P. Novák,et al.  Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries , 2006 .

[39]  Young-Min Choi,et al.  Aqueous processing of natural graphite particulates for lithium-ion battery anodes and their electrochemical performance , 2005 .

[40]  Vincent A. Hackley,et al.  Effect of Carboxymethyl Cellulose on Aqueous Processing of Natural Graphite Negative Electrodes and their Electrochemical Performance for Lithium Batteries , 2005 .

[41]  T. Jow,et al.  Evaluation on a water-based binder for the graphite anode of Li-ion batteries , 2004 .

[42]  S. Pejovnik,et al.  Cellulose as a binding material in graphitic anodes for Li ion batteries: a performance and degradation study , 2003 .

[43]  J. P. Olivier,et al.  Determination of the absolute and relative extents of basal plane surface area and “non-basal plane surface” area of graphites and their impact on anode performance in lithium ion batteries , 2001 .

[44]  N. S. Hoang,et al.  A Low-Cost , 1997 .

[45]  Matthias Stieß,et al.  Mechanische Verfahrenstechnik 1 , 1992 .

[46]  R. D. Levie,et al.  On porous electrodes in electrolyte solutions—IV , 1963 .