Chu I: cofree equivalences, dualities and *-autonomous categories

We study three comonads derived from the comma construction. The induced coalgebras correspond to the three concepts displayed in the title of the paper. The comonad that yields the *-autonomous categories is, in essence, the Chu construction, which has recently awaken much interest in computer science. We describe its couniversal property. It is right adjoint to the inclusion of *-autonomous categories among autonomous categories, with lax structure-preserving morphisms. Moreover, this inclusion turns out to be comonadic: *-autonomous categories are exactly the Chu-coalgebras.

[1]  D. H. Hyers Linear topological spaces , 1945 .

[2]  Vineet Gupta,et al.  Chu spaces: a model of concurrency , 1994 .

[3]  Vaughan R. Pratt,et al.  Chu spaces: automata with quantum aspects , 1994, Proceedings Workshop on Physics and Computation. PhysComp '94.

[4]  Vaughan R. Pratt,et al.  The Second Calculus of Binary Relations , 1993, MFCS.

[5]  Myles Tierney,et al.  Categories with models , 1969 .

[6]  Gordon D. Plotkin,et al.  Configuration structures , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[7]  Carolyn Brown,et al.  A categorical linear framework for Petri nets , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[8]  John W. Gray,et al.  Categories in Computer Science and Logic , 1989 .

[9]  G W Mackey,et al.  On Infinite Dimensional Linear Spaces. , 1943, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Vaughan R. Pratt,et al.  Gates accept concurrent behavior , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[11]  Volker Zöberlein,et al.  Doctrines on 2-categories , 1976 .

[12]  Ross Street,et al.  Fibrations in bicategories , 1980 .

[13]  Thomas Streicher,et al.  Games semantics for linear logic , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[14]  George W. Mackey,et al.  On infinite-dimensional linear spaces , 1945 .

[15]  Vaughan R. Pratt,et al.  The Stone gamut: a coordinatization of mathematics , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[16]  de Paiva,et al.  The Dialectica categories , 1991 .

[17]  V. Pratt,et al.  Linear Logic For Generalized Quantum Mechanics , 1992, Workshop on Physics and Computation.

[18]  Ieke Moerdijk,et al.  Local Maps of Toposes , 1989 .

[19]  Dusko Pavlovic,et al.  Maps II: Chasing Diagrams in Categorical Proof Theory , 1996, Log. J. IGPL.

[20]  R. A. G. Seely,et al.  Linear Logic, -Autonomous Categories and Cofree Coalgebras , 1989 .

[21]  Michael Barr,et al.  *-Autonomous categories and linear logic , 1991, Mathematical Structures in Computer Science.

[22]  Michael Barr,et al.  Accessible categories and models of linear logic , 1991 .

[23]  G. M. Kelly,et al.  Two-dimensional monad theory , 1989 .

[24]  A. Kock Monads for which Structures are Adjoint to Units , 1995 .

[25]  Ross Street,et al.  Fibrations and Yoneda's lemma in a 2-category , 1974 .

[26]  Vaughan R. Pratt,et al.  Complementarity and Uncertainty in Rational Mechanics , 1994 .