Closing the "quantum supremacy" gap: achieving real-time simulation of a random quantum circuit using a new Sunway supercomputer

We develop a high-performance tensor-based simulator for random quantum circuits(RQCs) on the new Sunway supercomputer. Our major innovations include: (1) a near-optimal slicing scheme, and a path-optimization strategy that considers both complexity and compute density; (2) a three-level parallelization scheme that scales to about 42 million cores; (3) a fused permutation and multiplication design that improves the compute efficiency for a wide range of tensor contraction scenarios; and (4) a mixed-precision scheme to further improve the performance. Our simulator effectively expands the scope of simulatable RQCs to include the 10X10(qubits)X(1+40+1)(depth) circuit, with a sustained performance of 1.2 Eflops (single-precision), or 4.4 Eflops (mixed-precision)as a new milestone for classical simulation of quantum circuits; and reduces the simulation sampling time of Google Sycamore to 304 seconds, from the previously claimed 10,000 years.

[1]  Jack Dongarra,et al.  Report on the Fujitsu Fugaku System , 2020 .

[2]  Daniel Lidar,et al.  Boundaries of quantum supremacy via random circuit sampling , 2020, npj Quantum Information.

[3]  Paolo Bientinesi,et al.  Design of a High-Performance GEMM-like Tensor–Tensor Multiplication , 2016, ACM Trans. Math. Softw..

[4]  P. Zhang,et al.  Simulating the Sycamore quantum supremacy circuits , 2021, 2103.03074.

[5]  Guangwen Yang,et al.  Quantum computational advantage using photons , 2020, Science.

[6]  David Kainer,et al.  Attacking the Opioid Epidemic: Determining the Epistatic and Pleiotropic Genetic Architectures for Chronic Pain and Opioid Addiction , 2018, SC18: International Conference for High Performance Computing, Networking, Storage and Analysis.

[7]  I. Oseledets,et al.  Simple heuristics for efficient parallel tensor contraction and quantum circuit simulation , 2020, ArXiv.

[8]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[9]  Travis S. Humble,et al.  Establishing the quantum supremacy frontier with a 281 Pflop/s simulation , 2019, Quantum Science and Technology.

[10]  Youwei Zhao,et al.  Verifying Random Quantum Circuits with Arbitrary Geometry Using Tensor Network States Algorithm. , 2021, Physical review letters.

[11]  Wei Ge,et al.  The Sunway TaihuLight supercomputer: system and applications , 2016, Science China Information Sciences.

[12]  John Preskill,et al.  Quantum computing and the entanglement frontier , 2012, 1203.5813.

[13]  Thomas Häner,et al.  0.5 Petabyte Simulation of a 45-Qubit Quantum Circuit , 2017, SC17: International Conference for High Performance Computing, Networking, Storage and Analysis.

[14]  Bo Yuan,et al.  Classical Simulation of Quantum Supremacy Circuits , 2020, 2005.06787.

[15]  Xiang Fu,et al.  General-Purpose Quantum Circuit Simulator with Projected Entangled-Pair States and the Quantum Supremacy Frontier. , 2019, Physical review letters.

[16]  John A. Gunnels,et al.  Leveraging Secondary Storage to Simulate Deep 54-qubit Sycamore Circuits , 2019, 1910.09534.

[17]  Igor L. Markov,et al.  Simulating Quantum Computation by Contracting Tensor Networks , 2008, SIAM J. Comput..

[18]  Igor L. Markov,et al.  Quantum Supremacy Is Both Closer and Farther than It Appears , 2018, ArXiv.

[19]  Recursive Multi-Tensor Contraction for XEB Verification of Quantum Circuits , 2021, 2108.05665.

[20]  P. Zhang,et al.  Solving the sampling problem of the Sycamore quantum supremacy circuits , 2021 .

[21]  Franck Cappello,et al.  Full-state quantum circuit simulation by using data compression , 2019, SC.

[22]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[23]  Guangwen Yang,et al.  Quantum Supremacy Circuit Simulation on Sunway TaihuLight , 2018, IEEE Transactions on Parallel and Distributed Systems.

[24]  John A. Gunnels,et al.  Breaking the 49-Qubit Barrier in the Simulation of Quantum Circuits , 2017, 1710.05867.

[25]  Nobuyasu Ito,et al.  Massively parallel quantum computer simulator, eleven years later , 2018, Comput. Phys. Commun..

[26]  H. Neven,et al.  Simulation of low-depth quantum circuits as complex undirected graphical models , 2017, 1712.05384.

[27]  Rupak Biswas,et al.  A flexible high-performance simulator for the verification and benchmarking of quantum circuits implemented on real hardware , 2018 .

[28]  Jeff Nichols,et al.  Announcing Supercomputer Summit , 2016 .

[29]  J. Biamonte,et al.  Tensor Networks in a Nutshell , 2017, 1708.00006.

[30]  Yaoyun Shi,et al.  Classical Simulation of Intermediate-Size Quantum Circuits , 2018, 1805.01450.

[31]  J. D. Wong-Campos,et al.  Benchmarking an 11-qubit quantum computer , 2019, Nature Communications.

[32]  E Weinan,et al.  Pushing the Limit of Molecular Dynamics with Ab Initio Accuracy to 100 Million Atoms with Machine Learning , 2020, SC20: International Conference for High Performance Computing, Networking, Storage and Analysis.

[33]  Johnnie Gray,et al.  Hyper-optimized tensor network contraction , 2020, Quantum.

[34]  Prabhat,et al.  Exascale Deep Learning for Climate Analytics , 2018, SC18: International Conference for High Performance Computing, Networking, Storage and Analysis.

[35]  Thomas Lippert,et al.  Massively parallel quantum computer simulator , 2006, Comput. Phys. Commun..