An immune algorithm with stochastic aging and kullback entropy for the chromatic number problem

We present a new Immune Algorithm, IMMALG, that incorporates a Stochastic Aging operator and a simple local search procedure to improve the overall performances in tackling the chromatic number problem (CNP) instances. We characterize the algorithm and set its parameters in terms of Kullback Entropy. Experiments will show that the IA we propose is very competitive with the state-of-art evolutionary algorithms.

[1]  Paolo Dell'Olmo,et al.  Iterative coloring extension of a maximum clique , 2001 .

[2]  Chak-Kuen Wong,et al.  A new model of simulated evolutionary computation-convergence analysis and specifications , 2001, IEEE Trans. Evol. Comput..

[3]  Simon M. Garrett,et al.  How Do We Evaluate Artificial Immune Systems? , 2005, Evolutionary Computation.

[4]  D. de Werra,et al.  An introduction to timetabling , 1985 .

[5]  S. Motta,et al.  Pattern recognition by primary and secondary response of an Artificial Immune System , 2001 .

[6]  Fernando José Von Zuben,et al.  Learning and optimization using the clonal selection principle , 2002, IEEE Trans. Evol. Comput..

[7]  Jin-Kao Hao,et al.  Hybrid Evolutionary Algorithms for Graph Coloring , 1999, J. Comb. Optim..

[8]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[9]  David S. Johnson,et al.  Cliques, Coloring, and Satisfiability , 1996 .

[10]  R. L. Brooks On Colouring the Nodes of a Network , 1941 .

[11]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[12]  P E Seiden,et al.  A model for simulating cognate recognition and response in the immune system. , 1992, Journal of theoretical biology.

[13]  D. Dasgupta Artificial Immune Systems and Their Applications , 1998, Springer Berlin Heidelberg.

[14]  E. Jaynes Probability theory : the logic of science , 2003 .

[15]  Leandro Nunes de Castro,et al.  The Clonal Selection Algorithm with Engineering Applications 1 , 2000 .

[16]  Fred W. Glover,et al.  Coloring by tabu branch and bound , 1993, Cliques, Coloring, and Satisfiability.

[17]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning , 1991, Oper. Res..

[18]  D. S. Sivia,et al.  Data Analysis , 1996, Encyclopedia of Evolutionary Psychological Science.

[19]  Feng Luo,et al.  Exploring the k-colorable landscape with Iterated Greedy , 1993, Cliques, Coloring, and Satisfiability.

[20]  Vincenzo Cutello,et al.  Clonal Selection Algorithms: A Comparative Case Study Using Effective Mutation Potentials , 2005, ICARIS.

[21]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[22]  John Skilling,et al.  Data analysis : a Bayesian tutorial , 1996 .

[23]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[24]  Robert I. Damper,et al.  Breaking the symmetry of the graph colouring problem with genetic algorithms , 2000 .

[25]  Graph colorings and the axiom of choice , 1991 .

[26]  Edward P. K. Tsang,et al.  Foundations of constraint satisfaction , 1993, Computation in cognitive science.

[27]  Charles F. Hockett,et al.  A mathematical theory of communication , 1948, MOCO.

[28]  Jonathan Timmis,et al.  Artificial immune systems - a new computational intelligence paradigm , 2002 .

[29]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[30]  Anne Condon,et al.  Experiments with parallel graph coloring heuristics and applications of graph coloring , 1993, Cliques, Coloring, and Satisfiability.

[31]  Craig A. Morgenstern Distributed coloration neighborhood search , 1993, Cliques, Coloring, and Satisfiability.

[32]  Vincenzo Cutello,et al.  Immune Algorithms with Aging Operators for the String Folding Problem and the Protein Folding Problem , 2005, EvoCOP.

[33]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[34]  Magnús M. Hallórsson A still better performance guarantee for approximate graph coloring , 1993 .

[35]  Magnús M. Halldórsson,et al.  A Still Better Performance Guarantee for Approximate Graph Coloring , 1993, Information Processing Letters.

[36]  Michael A. Trick,et al.  A Column Generation Approach for Graph Coloring , 1996, INFORMS J. Comput..

[37]  Valmir Carneiro Barbosa,et al.  Two Novel Evolutionary Formulations of the Graph Coloring Problem , 2003, J. Comb. Optim..

[38]  Frank Thomson Leighton,et al.  A Graph Coloring Algorithm for Large Scheduling Problems. , 1979, Journal of research of the National Bureau of Standards.

[39]  S. Forrest,et al.  Immunology as Information Processing , 2001 .

[40]  Vincenzo Cutello,et al.  An immune algorithm with hyper-macromutations for the Dill's 2D hydrophobic-hydrophilic model , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[41]  Jin-Kao Hao,et al.  Mic'2001 -4th Metaheuristics International Conference an Analysis of Solution Properties of the Graph Coloring Problem , 2001 .

[42]  Giuseppe Nicosia,et al.  Pattern recognition by primary and secondary response of an Artificial Immune System , 2001, Theory in Biosciences.

[43]  Charles Fleurent,et al.  Object-oriented implementation of heuristic search methods for Graph Coloring, Maximum Clique, and Satisfiability , 1993, Cliques, Coloring, and Satisfiability.

[44]  Celia A. Glass,et al.  Genetic Algorithm for Graph Coloring: Exploration of Galinier and Hao's Algorithm , 2003, J. Comb. Optim..

[45]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[46]  David S. Johnson,et al.  An application of graph coloring to printed circuit testing , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[47]  Vincenzo Cutello,et al.  Exploring the Capability of Immune Algorithms: A Characterization of Hypermutation Operators , 2004, ICARIS.

[48]  John L. Hennessy,et al.  The priority-based coloring approach to register allocation , 1990, TOPL.

[49]  Vincenzo Cutello,et al.  An Immunological Algorithm for Global Numerical Optimization , 2005, Artificial Evolution.

[50]  Vincenzo Cutello,et al.  A Hybrid Immune Algorithm with Information Gain for the Graph Coloring Problem , 2003, GECCO.

[51]  A. Gamst,et al.  Some lower bounds for a class of frequency assignment problems , 1986, IEEE Transactions on Vehicular Technology.

[52]  Giorgio Gambosi,et al.  Complexity and Approximation , 1999, Springer Berlin Heidelberg.