A New Proof of the F5 Algorithm

The F5 algorithm is presented by Faugere in 2002. However, Faugere have not provide the rigorous proofs so far. In this paper, we will give a new complete proof and hence reveal the essence of this algorithm. The proof consists of the correctness and termination of the algorithm and the correctness of two criteria in it.

[1]  Christian Eder,et al.  On The Criteria Of The F5 Algorithm , 2008, 0804.2033.

[2]  Till Stegers,et al.  Faugere's F5 Algorithm Revisited , 2006, IACR Cryptol. ePrint Arch..

[3]  Fatima Abu Salem A New Sparse Gaussian Elimination Algorithm and the Niederreiter Linear System for Trinomials over F2 , 2005, Computing.

[4]  Rüdiger Gebauer,et al.  Buchberger's algorithm and staggered linear bases , 1986, SYMSAC '86.

[5]  Carlo Traverso,et al.  Gröbner bases computation using syzygies , 1992, ISSAC '92.

[6]  B. Buchberger,et al.  Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[7]  Bruno Buchberger,et al.  A criterion for detecting unnecessary reductions in the construction of Groebner bases , 1979, EUROSAM.

[8]  N. Bose Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory , 1995 .

[9]  Carlo Traverso,et al.  “One sugar cube, please” or selection strategies in the Buchberger algorithm , 1991, ISSAC '91.

[10]  J. Faugère A new efficient algorithm for computing Gröbner bases (F4) , 1999 .

[11]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[12]  Wang Dingkang BRANCH GROBNER BASES ALGORITHM OVER BOOLEAN RING , 2009 .

[13]  J. Faugère A new efficient algorithm for computing Gröbner bases (F4) , 1999 .

[14]  임종인,et al.  Gröbner Bases와 응용 , 1995 .

[15]  Daniel Lazard,et al.  Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.

[16]  Jean-Charles Faugère,et al.  Complexity of Gröbner basis computation for Semi-regular Overdetermined sequences over F_2 with solutions in F_2 , 2002 .