Biogeochemical modelling of the rise in atmospheric oxygen

Understanding the evolution of atmospheric molecular oxygen levels is a fundamental unsolved problem in Earth’s history. We develop a quantitative biogeochemical model that simulates the Palaeoproterozoic transition of the Earth’s atmosphere from a weakly reducing state to an O 2 -rich state. The purpose is to gain an insight into factors that plausibly control the timing and rapidity of the oxic transition. The model uses a simplified atmospheric chemistry (parameterized from complex photochemical models) and evolving redox fluxes in the Earth system. We consider time-dependent fluxes that include organic carbon burial and associated oxygen production, reducing gases from metamorphic and volcanic sources, oxidative weathering, and the escape of hydrogen to space. We find that the oxic transition occurs in a geologically short time when the O 2 -consuming flux of reducing gases falls below the flux of organic carbon burial that produces O 2 . A short timescale for the oxic transition is enhanced by a positive feedback due to decreasing destruction of O 2 as stratospheric ozone forms, which is captured in our atmospheric chemistry parameterization. We show that one numerically selfconsistent solution for the rise of O 2 involves a decline in flux of reducing gases driven by irreversible secular oxidation of the crust caused by time-integrated hydrogen escape to space in the preoxic atmosphere, and that this is compatible with constraints from the geological record. In this model, the timing of the oxic transition is strongly affected by buffers of reduced materials, particularly iron, in the continental crust. An alternative version of the model, where greater fluxes of reduced hydrothermal cations from the Archean seafloor consume O 2 , produces a similar history of O 2 and CH 4 . When climate and biosphere feedbacks are included in our model of the oxic transition, we find that multiple ‘Snowball Earth’ events are simulated under certain circumstances, as methane collapses and rises repeatedly before reaching a new steady-state. Received 15 March 2006; accepted 31 July 2006 Corresponding author: M. W. Claire, Tel.: 206-616-4549; fax: 206 685-0403: e-mail: mclaire@astro.washington.edu.

[1]  James F. Kasting,et al.  Methane and climate during the Precambrian era , 2005 .

[2]  N. Sleep Dioxygen over geological time. , 2005, Metal ions in biological systems.

[3]  Lee R. Kump,et al.  Failure of climate regulation in a geophysiological model , 1994, Nature.

[4]  J. Russell,et al.  On the distribution of mesospheric molecular hydrogen inferred from HALOE measurements of H2O and CH4 , 1996 .

[5]  M. Sogin,et al.  Genomic Markers of Ancient Anaerobic Microbial Pathways: Sulfate Reduction, Methanogenesis, and Methane Oxidation , 2003, The Biological Bulletin.

[6]  David L. Valentine,et al.  Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review , 2002, Antonie van Leeuwenhoek.

[7]  Jacob R Waldbauer,et al.  Steroids, triterpenoids and molecular oxygen , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[8]  S. Ingebritsen,et al.  Permeability of the continental crust: Implications of geothermal data and metamorphic systems , 1999 .

[9]  K. Zahnle,et al.  Biogenic Methane, Hydrogen Escape, and the Irreversible Oxidation of Early Earth , 2001, Science.

[10]  J. Kasting,et al.  UV shielding of NH3 and O2 by organic hazes in the Archean atmosphere , 2001 .

[11]  J. Karhu,et al.  Carbon isotopes and the rise of atmospheric oxygen , 1996 .

[12]  M. Schidlowski,et al.  Model calculations for the terrestrial carbon cycle: carbon isotope geochemistry and evolution of photosynthetic oxygen , 1975 .

[13]  R. Buick,et al.  Redox state of the Archean atmosphere: Evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia , 1999 .

[14]  Manfred Schidlowski,et al.  Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept , 2001 .

[15]  G. Etiope,et al.  Global methane emission through mud volcanoes and its past and present impact on the Earth’s climate—a comment , 2005 .

[16]  T. Ahrens Impact erosion of terrestrial planetary atmospheres , 1993 .

[17]  T. Ackerman,et al.  Climatic consequences of very high carbon dioxide levels in the earth's early atmosphere. , 1986, Science.

[18]  D. Hunten Atmospheric Evolution of the Terrestrial Planets , 1993, Science.

[19]  J. Kasting,et al.  Mantle Redox Evolution and the Oxidation State of the Archean Atmosphere , 1993, The Journal of Geology.

[20]  Roger E. Summons,et al.  A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia , 2003 .

[21]  J F Nunn,et al.  Evolution of the atmosphere. , 1998, Proceedings of the Geologists' Association. Geologists' Association.

[22]  T. Kral,et al.  Hydrogen Consumption by Methanogens on the Early Earth , 1998, Origins of life and evolution of the biosphere.

[23]  D. Catling Comment on "A Hydrogen-Rich Early Earth Atmosphere" , 2006, Science.

[24]  H. Ohmoto Evidence in pre-2.2 Ga paleosols for the early evolution of atmospheric oxygen and terrestrial biota , 1996, Geology.

[25]  K. H. Wedepohl,et al.  The Composition of the Continental Crust , 1995 .

[26]  Donald E. Canfield,et al.  Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies , 1996, Nature.

[27]  P. Brimblecombe,et al.  Iron and sulfur in the pre-biologic ocean. , 1985, Precambrian research.

[28]  Tyler B. Coplen,et al.  Reporting of stable hydrogen, carbon, and oxygen isotopic abundances (Technical Report) , 1994 .

[29]  John W. Delano,et al.  Redox History of the Earth's Interior since ∼3900 Ma: Implications for Prebiotic Molecules , 2001, Origins of life and evolution of the biosphere.

[30]  C. McKay,et al.  Why O2 is required by complex life on habitable planets and the concept of planetary "oxygenation time". , 2005, Astrobiology.

[31]  R. Summons,et al.  Sedimentary Hydrocarbons, Biomarkers for Early Life , 2003 .

[32]  M. Ghiorso,et al.  Ferric-ferrous equilibria in natural silicate liquids at 1 bar , 1981 .

[33]  T. Apanasovich,et al.  Global gas flux from mud volcanoes: A significant source of fossil methane in the atmosphere and the ocean , 2003 .

[34]  Ilana Berman-Frank,et al.  Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. , 2003, Research in microbiology.

[35]  A. Knoll,et al.  Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea , 2005, Nature.

[36]  A. Bekker,et al.  Dating the rise of atmospheric oxygen , 2004, Nature.

[37]  F. Robert,et al.  Nitrogen isotope ratios of kerogens in Precambrian cherts: a record of the evolution of atmosphere chemistry? , 1999 .

[38]  James N. Pitts,et al.  Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications , 1999 .

[39]  W. McDonough,et al.  Thermal structure, thickness and composition of continental lithosphere , 1998 .

[40]  B. Frost Chapter 1.INTRODUCTION TO OXYGEN FUGACITY AND ITS PETROLOGIC IMPORTANCE , 1991 .

[41]  High-resolution simulations of the final assembly of Earth-like planets I. Terrestrial accretion and dynamics , 2005, astro-ph/0510284.

[42]  K. Caldeira,et al.  The life span of the biosphere revisited , 1992, Nature.

[43]  A. Bézos,et al.  The Fe3+/ΣFe ratios of MORB glasses and their implications for mantle melting , 2005 .

[44]  J. Kasting,et al.  A Coupled Ecosystem-Climate Model for Predicting the Methane Concentration in the Archean Atmosphere , 2001, Origins of life and evolution of the biosphere.

[45]  JOHN S. Lewis,et al.  The Composition and Early Evolution of Earth , 1993 .

[46]  John S. Lewis,et al.  Book Review: The chemical evolution of the atmosphere and oceans. By Heinrich D. Holland. Princeton Univ. Press, Princeton, N.J., 1984. pp., pb 24.50, hb 75.00 , 1985 .

[47]  J. Connolly,et al.  C‐O‐H‐S fluid composition and oxygen fugacity in graphitic metapelites , 1993 .

[48]  S. Clifford,et al.  Martian CH(4): sources, flux, and detection. , 2006, Astrobiology.

[49]  J. Gutzmer,et al.  Tropical laterites, life on land, and the history of atmospheric oxygen in the Paleoproterozoic , 2002 .

[50]  J. Lovelock,et al.  Methanogenesis, fires and the regulation of atmospheric oxygen. , 1978, Bio Systems.

[51]  Toby Tyrrell,et al.  The relative influences of nitrogen and phosphorus on oceanic primary production , 1999, Nature.

[52]  D. Canfield A new model for Proterozoic ocean chemistry , 1998, Nature.

[53]  K. H. Wedepohl The Composition of the Continental Crust , 1995 .

[54]  B. Runnegar Precambrian oxygen levels estimated from the biochemistry and physiology of early eukaryotes , 1991 .

[55]  D. Hunten Kuiper prize lecture: Escape of atmospheres, ancient and modern☆ , 1990 .

[56]  M. Brasier,et al.  Did global tectonics drive early biosphere evolution? Carbon isotope record from 2.6 to 1.9 Ga carbonates of Western Australian basins , 2002 .

[57]  B. Mason Composition of the Earth , 1966, Nature.

[58]  J. Kasting,et al.  Greenhouse warming by CH4 in the atmosphere of early Earth. , 2000, Journal of geophysical research.

[59]  G. Roe,et al.  EVOLUTION OF THE CONTINENTAL LITHOSPHERE , 2005 .

[60]  D. Canfield THE EARLY HISTORY OF ATMOSPHERIC OXYGEN: Homage to Robert M. Garrels , 2005 .

[61]  R Buick,et al.  Archean molecular fossils and the early rise of eukaryotes. , 1999, Science.

[62]  T. Moisan,et al.  Modelling the effect of temperature on the maximum growth rates of phytoplankton populations , 2002 .

[63]  Jennifer M. Robinson,et al.  PHANEROZOIC ATMOSPHERIC OXYGEN , 2003 .

[64]  Frederick M. Walter,et al.  Pre- and main-sequence evolution of solar activity , 1991 .

[65]  S. Taylor,et al.  The geochemical evolution of the continental crust , 1995 .

[66]  R. Berner The phanerozoic carbon cycle : CO[2] and O[2] , 2004 .

[67]  Peter R. Crane,et al.  The origin and early evolution of plants on land , 1997, Nature.

[68]  H. Holland Discussion of the article by A. C. Lasaga and H. Ohmoto on “The Oxygen Geochemical Cycle: Dynamics and Stability,” Geochim. Cosmochim. Acta 66, 361–381, 2002 , 2003 .

[69]  Donald E. Canfield,et al.  The Archean sulfur cycle and the early history of atmospheric oxygen. , 2000, Science.

[70]  T. Coplen,et al.  Reporting of stable hydrogen, carbon, and oxygen isotopic abundances , 1995 .

[71]  Jennifer M. Robinson,et al.  Burning of forest materials under late Paleozoic high atmospheric oxygen levels , 2004 .

[72]  J. Lunine,et al.  High-resolution simulations of the final assembly of Earth-like planets. 2. Water delivery and planetary habitability. , 2005, Astrobiology.

[73]  Nils-Axel Mörner,et al.  Carbon degassing from the lithosphere , 2002 .

[74]  J. Hayes,et al.  Dynamics of the Neoproterozoic carbon cycle , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[75]  D. Canil Vanadium partitioning between orthopyroxene, spinel and silicate melt and the redox states of mantle source regions for primary magmas , 1999 .

[76]  Michael Rothrock,et al.  Long-term manipulations of intact microbial mat communities in a greenhouse collaboratory: simulating earth's present and past field environments. , 2013, Astrobiology.

[77]  H. Strauss,et al.  Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment , 1992, Nature.

[78]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[79]  Mike S. M. Jetten,et al.  A microbial consortium couples anaerobic methane oxidation to denitrification , 2006, Nature.

[80]  J. Kasting,et al.  The Molecular Origins of Life: The early atmosphere as a source of biogenic compounds , 1998 .

[81]  M. Santosh,et al.  Continents and Supercontinents , 2004 .

[82]  K. Caldeira,et al.  Susceptibility of the early Earth to irreversible glaciation caused by carbon dioxide clouds , 1992, Nature.

[83]  C. Hawkesworth,et al.  Granitic Perspectives on the Generation and Secular Evolution of the Continental Crust , 2003 .

[84]  Scott Rutherford,et al.  Metabolic Activity of Subsurface Life in Deep-Sea Sediments , 2002, Science.

[85]  N. Sleep,et al.  Weathering of quartz as an Archean climatic indicator , 2006 .

[86]  D. D. Marais,et al.  The role of microbial mats in the production of reduced gases on the early Earth , 2001, Nature.

[87]  R. Kopp,et al.  The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[88]  A. Watson,et al.  The dynamics of a rapidly escaping atmosphere: Applications to the evolution of Earth and Venus , 1981 .

[89]  J. Kasting,et al.  Rise of atmospheric oxygen and the “upside‐down” Archean mantle , 2001 .

[90]  G. Logan,et al.  Barite, BIFs and bugs: evidence for the evolution of the Earth’s early hydrosphere , 2004 .

[91]  M. Heimann,et al.  Impact of vegetation and preferential source areas on global dust aerosol: Results from a model study , 2002 .

[92]  E. Essene,et al.  An oxygen barometer with the assemblage garnet–epidote , 2000 .

[93]  J. Houghton Climate change 1994 : radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios , 1995 .

[94]  J. Veizer,et al.  Tectonic control of chemical and isotopic composition of ancient oceans; the impact of continental growth , 2000 .

[95]  B. Chappell,et al.  The Peninsular Ranges Batholith: an insight into the evolution of the Cordilleran batholiths of southwestern North America , 1988, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[96]  M. Schidlowski A 3,800-million-year isotopic record of life from carbon in sedimentary rocks , 1988, Nature.

[97]  D. Rubie,et al.  The Constancy of Upper Mantle fO2 Through Time Inferred from V/Sc Ratios in Basalts: Implications for the Rise in Atmospheric O2 , 2004 .

[98]  J. Betts,et al.  The oxygen content of ocean bottom waters, the burial efficiency of organic carbon, and the regulation of atmospheric oxygen. , 1991, Global and planetary change.

[99]  R. Berner,et al.  GEOCARB III : A REVISED MODEL OF ATMOSPHERIC CO 2 OVER PHANEROZOIC TIME , 2001 .

[100]  S. Petsch The Global Oxygen Cycle , 2003 .

[101]  H. Ohmoto,et al.  Devolatilization equilibria in graphitic systems , 1977 .

[102]  F. Mackenzie,et al.  Evolution of sedimentary rocks , 1971 .

[103]  Derek C. Quigley,et al.  The world's most spectacular marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California): Quantification of emissions , 1999 .

[104]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[105]  B. Windley,et al.  Archean Plate Tectonics: Constraints and Inferences , 1982, The Journal of Geology.

[106]  S. Warren,et al.  Snowball Earth: Ice thickness on the tropical ocean , 2002 .

[107]  D. Schrag,et al.  The snowball Earth hypothesis: testing the limits of global change , 2002 .

[108]  P. Aharon Redox stratification and anoxia of the early Precambrian oceans: Implications for carbon isotope excursions and oxidation events , 2005 .

[109]  J. Kasting,et al.  New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, Australia , 2003 .

[110]  H. D. Holland,et al.  Paleosols and the evolution of atmospheric oxygen: a critical review. , 1998, American journal of science.

[111]  K. Zahnle,et al.  Photochemistry of methane and the formation of hydrocyanic acid (HCN) in the Earth's early atmosphere , 1986 .

[112]  H. D. Holland,et al.  The oxygenation of the atmosphere and oceans , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[113]  J. Lunine,et al.  Terrestrial Planet Formation in Disks with Varying Surface Density Profiles , 2005, astro-ph/0507004.

[114]  David C. Catling,et al.  The loss of mass‐independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane , 2006 .

[115]  S. Carroll,et al.  Early animal evolution: emerging views from comparative biology and geology. , 1999, Science.

[116]  J. Kasting,et al.  The evolution of atmospheric ozone , 1980 .

[117]  E. Tang,et al.  CYANOBACTERIAL DOMINANCE OF POLAR FRESHWATER ECOSYSTEMS: ARE HIGH‐LATITUDE MAT‐FORMERS ADAPTED TO LOW TEMPERATURE? 1 , 1997 .

[118]  D. Hunten,et al.  Hydrogen Loss from the Terrestrial Planets , 1976 .

[119]  M. Schidlowski,et al.  Environmental Evolution of the Archean-early Proterozoic Earth , 1983 .

[120]  Paul B. Hays,et al.  A negative feedback mechanism for the long‐term stabilization of Earth's surface temperature , 1981 .

[121]  J. Kasting,et al.  HABITABLE ZONES AROUND LOW MASS STARS AND THE SEARCH FOR EXTRATERRESTRIAL LIFE , 1997, Origins of life and evolution of the biosphere.

[122]  G. M. Young,et al.  Paleoproterozoic Huronian basin : product of a Wilson cycle punctuated by glaciations and a meteorite impact , 2001 .

[123]  W. G. Chaloner Fossil charcoal as an indicator of palaeoatmospheric oxygen level , 1989, Journal of the Geological Society.

[124]  D. Canfield,et al.  Calibration of Sulfate Levels in the Archean Ocean , 2002, Science.

[125]  Sallie W. Chisholm,et al.  Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea , 2001 .

[126]  K. Jucks,et al.  Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. , 2002, Astrobiology.

[127]  D. desmarais,et al.  Biogeochemical Cycles of Carbon and Sulfur , 2002 .

[128]  James C. G. Walker Numerical adventures with geochemical cycles , 1990 .

[129]  James F. Kasting,et al.  A coupled atmosphere–ecosystem model of the early Archean Earth , 2005 .

[130]  C. McCammon,et al.  Mössbauer spectroscopic determination of Fe3+/Fe2+ in synthetic basaltic glass: a test of empirical fO2 equations under superliquidus and subliquidus conditions , 2004 .

[131]  The formation and habitability of terrestrial planets in the presence of close-in giant planets , 2004, astro-ph/0407620.

[132]  H. D. Holland,et al.  The Hekpoort paleosol profile in Strata 1 at Gaborone, Botswana: Soil formation during the Great Oxidation Event , 2003 .

[133]  K. Hinrichs Microbial fixation of methane carbon at 2.7 Ga: Was an anaerobic mechanism possible? , 2002 .

[134]  Joseph L. Kirschvink,et al.  Late Proterozoic low-latitude global glaciation: the snowball Earth , 1992 .

[135]  G. Roe,et al.  THE EARLY HISTORY OF ATMOSPHERIC OXYGEN : Homage to , 2006 .

[136]  P. Medvedev,et al.  Extreme 13Ccarb enrichment in ca. 2.0 Ga magnesite–stromatolite–dolomite–`red beds' association in a global context: a case for the world-wide signal enhanced by a local environment , 1999 .

[137]  M. Thiemens,et al.  Atmospheric influence of Earth's earliest sulfur cycle , 2000, Science.

[138]  N. Arndt,et al.  Nd isotopes and tectonics of 1.9-1.7 Ga crustal genesis , 1986 .

[139]  A. Fallick,et al.  Palaeoproterozoic evaporites in Fennoscandia: implications for seawater sulphate, the rise of atmospheric oxygen and local amplification of the δ13C excursion , 2005 .

[140]  D. D. Marais,et al.  When Did Photosynthesis Emerge on Earth? , 2000, Science.

[141]  D. Canfield,et al.  The transition to a sulphidic ocean ∼ 1.84 billion years ago , 2004, Nature.

[142]  D. Pearson,et al.  Mantle Samples Included in Volcanic Rocks: Xenoliths and Diamonds , 2003 .

[143]  Bess B. Ward,et al.  Black Sea methane geochemistry , 1991 .

[144]  C. Lécuyer,et al.  Long-term fluxes and budget of ferric iron: implication for the redox states of the Earth's mantle and atmosphere , 1999 .

[145]  D. Canfield,et al.  New insights into the burial history of organic carbon on the early Earth , 2004 .

[146]  K. Ruttenberg The Global Phosphorus Cycle , 2003 .

[147]  W. Seyfried,et al.  Hydrothermal Fe fluxes during the Precambrian: Effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers [rapid communication] , 2005 .

[148]  Alexander A. Pavlov,et al.  A Hydrogen-Rich Early Earth Atmosphere , 2005, Science.

[149]  W. McDonough,et al.  The composition of the Earth , 1995 .

[150]  Kentaro Nakamura,et al.  Carbonatization of oceanic crust by the seafloor hydrothermal activity and its significance as a CO2 sink in the Early Archean , 2004 .

[151]  Heinrich D. Holland,et al.  Volcanic gases, black smokers, and the great oxidation event , 2002 .

[152]  H. Lichtenegger,et al.  A Comparative Study of the Influence of the Active Young Sun on the Early Atmospheres of Earth, Venus, and Mars , 2007 .

[153]  H. D. Holland The chemistry of the atmosphere and oceans , 1978 .

[154]  A. Bekker,et al.  Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen , 2005 .

[155]  D. Catling,et al.  How Earth's atmosphere evolved to an oxic state: A status report , 2005 .

[156]  J. Kasting Evolution of a habitable planet , 2003 .

[157]  Michael A. Arthur,et al.  Methane-rich Proterozoic atmosphere? , 2003 .

[158]  J. Kasting,et al.  Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early Earth , 1984, Journal of atmospheric chemistry.

[159]  N. Sleep,et al.  Niches of the pre‐photosynthetic biosphere and geologic preservation of Earth's earliest ecology , 2007 .

[160]  U. Christensen Thermal evolution models for the Earth , 1985 .

[161]  R. T. Watson,et al.  Greenhouse gases and aerosols , 1990 .

[162]  J. Farquhar,et al.  Multiple sulfur isotopes and the evolution of the atmosphere , 2003 .

[163]  J. Kasting,et al.  Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. , 1988, Icarus.

[164]  D. J. De Marais,et al.  Evolution. When did photosynthesis emerge on Earth? , 2000, Science.

[165]  J. Connolly Multivariable phase diagrams; an algorithm based on generalized thermodynamics , 1990 .

[166]  J. King,et al.  Varve calibrated records of carbonate and organic carbon accumulation over the last 2000 years in the Black Sea , 1994 .

[167]  A. Knoll,et al.  Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? , 2002, Science.

[168]  J. Kasting,et al.  Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. , 2002, Astrobiology.

[169]  Jan Marten Huizenga,et al.  Thermodynamic modelling of C O H fluids , 2001 .

[170]  H. Volk,et al.  Biomarkers from Huronian oil-bearing fluid inclusions: An uncontaminated record of life before the Great Oxidation Event , 2006 .

[171]  N. Sleep,et al.  Carbon dioxide cycling and implications for climate on ancient Earth , 2001 .

[172]  J. Hayes,et al.  The carbon cycle and associated redox processes through time , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[173]  Sallie W. Chisholm,et al.  Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties , 1995 .