Microbial ecology of the cystic fibrosis lung.

Understanding the microbial flora of the cystic fibrosis (CF) respiratory tract is of considerable importance, as patient morbidity and death are primarily caused by chronic respiratory infections. However, chronically colonized CF airways represent a surprisingly complex and diverse ecosystem. The precise contributions of different microbes to patient morbidity, and in particular the importance of inter-specific interactions, remain largely unelucidated. The importance of within-species genetic and phenotypic variation has similarly received limited explicit attention. While a host of studies provide data on the microbial species recovered from patients, these are often incomparable due to differences in sampling and data reporting, or do not present the data in a way that aids our understanding of the ecosystem within each patient. This review brings together a cross-section of recent research on the CF airways and the microbes which infect them. The results presented suggest that understanding the CF lung in terms of its community and evolutionary ecology could benefit our understanding of disease progression and influence treatment regimens.

[1]  D. Pritchard,et al.  Differential Immune Modulatory Activity of Pseudomonas aeruginosa Quorum-Sensing Signal Molecules , 2004, Infection and Immunity.

[2]  David A. D'Argenio,et al.  Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[3]  N. Høiby,et al.  Early intervention and prevention of lung disease in cystic fibrosis: a European consensus. , 2004, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[4]  N. Busquets,et al.  Microorganismos patógenos aislados en muestras respiratorias de niños con fibrosis quística , 2005 .

[5]  Gabriel Hessel,et al.  Fibrose cística em um centro de referência no Brasil: características clínicas e laboratoriais de 104 pacientes e sua associação com o genótipo e a gravidade da doença , 2004 .

[6]  M. M. van der Zalm,et al.  Viral respiratory infections in cystic fibrosis , 2005, Journal of Cystic Fibrosis.

[7]  U. Römling,et al.  Impact of large chromosomal inversions on the adaptation and evolution of Pseudomonas aeruginosa chronically colonizing cystic fibrosis lungs , 2002, Molecular microbiology.

[8]  J. Marks,et al.  Siderophore Presence in Sputa of Cystic Fibrosis Patients , 1992, Infection and immunity.

[9]  P. Lebecque,et al.  Towards zero prevalence of chronic Pseudomonas aeruginosa infection in children with cystic fibrosis. , 2006, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[10]  A. Birch‐Andersen,et al.  Morphology Of Pseudomonas aeruginosa phages from the sputum of cystic fibrosis patients and from the phage typing set , 1991, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[11]  M. A. Santana,et al.  Prevalence of pathogens in cystic fibrosis patients in Bahia, Brazil. , 2003, The Brazilian journal of infectious diseases : an official publication of the Brazilian Society of Infectious Diseases.

[12]  J. Carlin,et al.  Bronchoalveolar lavage or oropharyngeal cultures to identify lower respiratory pathogens in infants with cystic fibrosis , 1996, Pediatric pulmonology.

[13]  D. Smith,et al.  Regional microbiology of the cystic fibrosis lung: a post-mortem study in adults. , 1998, The Journal of infection.

[14]  N. Høiby,et al.  EPIDEMIOLOGY OF PSEUDOMONAS AERUGINOSA INFECTION IN PATIENTS TREATED AT A CYSTIC FIBROSIS CENTRE , 1980, Acta pathologica et microbiologica Scandinavica. Section B, Microbiology.

[15]  R. Stern,et al.  Person-to-person transmission of Pseudomonas cepacia between patients with cystic fibrosis , 1990, The Lancet.

[16]  G. Rogers,et al.  Characterization of Bacterial Community Diversity in Cystic Fibrosis Lung Infections by Use of 16S Ribosomal DNA Terminal Restriction Fragment Length Polymorphism Profiling , 2004, Journal of Clinical Microbiology.

[17]  A. O'Brien-Ladner,et al.  Increased concentrations of iron and isoferritins in the lower respiratory tract of patients with stable cystic fibrosis. , 1999, American journal of respiratory and critical care medicine.

[18]  Richard C Boucher,et al.  Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. , 2002, The Journal of clinical investigation.

[19]  A. Buckling,et al.  Hypermutability Impedes Cooperation in Pathogenic Bacteria , 2005, Current Biology.

[20]  G. Haase,et al.  Long‐term fungal cultures from sputum of patients with cystic fibrosis , 1991, Mycoses.

[21]  E. Mahenthiralingam,et al.  Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis , 1994, Infection and immunity.

[22]  B. Guéry,et al.  Quorum sensing : une nouvelle cible thérapeutique pour Pseudomonas aeruginosa , 2006 .

[23]  N. Høiby,et al.  Eradication of early Pseudomonas aeruginosa infection. , 2005, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[24]  N. Høiby,et al.  RESPIRATORY INFECTIONS IN CYSTIC FIBROSIS PATIENTS CAUSED BY VIRUS, CHLAMYDIA AND MYCOPLASMA–POSSIBLE SYNERGISM WITH PSEUDOMONAS AERUGINOSA , 1981, Acta paediatrica Scandinavica.

[25]  William E Bentley,et al.  Microarray analysis of Pseudomonas aeruginosa reveals induction of pyocin genes in response to hydrogen peroxide , 2005, BMC Genomics.

[26]  Leo Eberl,et al.  Quorum sensing in the genus Burkholderia. , 2006, International journal of medical microbiology : IJMM.

[27]  J. Villena,et al.  Lactobacillus casei improves resistance to pneumococcal respiratory infection in malnourished mice. , 2005, The Journal of nutrition.

[28]  J. Carlin,et al.  Interlobar differences in bronchoalveolar lavage fluid from children with cystic fibrosis. , 2001, The European respiratory journal.

[29]  A. Buckling,et al.  Interference competition and parasite virulence , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[30]  F. Hoerr,et al.  Use of Bacteriophages in Combination with Competitive Exclusion to Reduce Salmonella from Infected Chickens , 2005, Avian diseases.

[31]  Y. Michel-Briand,et al.  The pyocins of Pseudomonas aeruginosa. , 2002, Biochimie.

[32]  M. Whiteley,et al.  Staphylococcus aureus Serves as an Iron Source for Pseudomonas aeruginosa during In Vivo Coculture , 2005, Journal of bacteriology.

[33]  A. Griffin,et al.  Cooperation and competition in pathogenic bacteria , 2004, Nature.

[34]  A. Dalton,et al.  Pulmonary infection in mild variant cystic fibrosis: implications for care. , 2006, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[35]  S. Molin,et al.  N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. , 2001, Microbiology.

[36]  R. Geffers,et al.  A Cystic Fibrosis Epidemic Strain of Pseudomonas aeruginosa Displays Enhanced Virulence and Antimicrobial Resistance , 2005, Journal of bacteriology.

[37]  A. Griffin,et al.  Social evolution theory for microorganisms , 2006, Nature Reviews Microbiology.

[38]  S. El-Shafie,et al.  Microbiological identification in cystic fibrosis patients with CFTR I1234V mutation. , 2004, Journal of tropical pediatrics.

[39]  G. O’Toole,et al.  Susceptibility of Biofilms to Bdellovibrio bacteriovorus Attack , 2005, Applied and Environmental Microbiology.

[40]  G. Perdigón,et al.  Effect of Lactobacillus casei and yogurt administration on prevention of Pseudomonas aeruginosa infection in young mice. , 2001, Journal of food protection.

[41]  J. Ribeiro,et al.  [Cystic fibrosis at a Brazilian center of excellence: clinical and laboratory characteristics of 104 patients and their association with genotype and disease severity]. , 2004, Jornal de Pediatria.

[42]  B. Tümmler,et al.  Highly adherent small-colony variants of Pseudomonas aeruginosa in cystic fibrosis lung infection. , 2003, Journal of medical microbiology.

[43]  B. Tümmler,et al.  Study of pyoverdine type and production by Pseudomonas aeruginosa isolated from cystic fibrosis patients: prevalence of type II pyoverdine isolates and accumulation of pyoverdine-negative mutations , 2001, Archives of Microbiology.

[44]  N. Høiby,et al.  Occurrence of Hypermutable Pseudomonas aeruginosa in Cystic Fibrosis Patients Is Associated with the Oxidative Stress Caused by Chronic Lung Inflammation , 2005, Antimicrobial Agents and Chemotherapy.

[45]  L. Saiman Microbiology of early CF lung disease. , 2004, Paediatric respiratory reviews.

[46]  P. Vandamme,et al.  Characterization of Unusual Bacteria Isolated from Respiratory Secretions of Cystic Fibrosis Patients and Description of Inquilinus limosus gen. nov., sp. nov , 2002, Journal of Clinical Microbiology.

[47]  J. Govan In vivo significance of bacteriocins and bacteriocin receptors. , 1986, Scandinavian journal of infectious diseases. Supplementum.

[48]  Pradeep K. Singh,et al.  Cystic Fibrosis Sputum Supports Growth and Cues Key Aspects of Pseudomonas aeruginosa Physiology , 2005, Journal of bacteriology.

[49]  J. Elborn,et al.  Microbial ecology of the cystic fibrosis lung: does microflora type influence microbial loading? , 2005, British journal of biomedical science.

[50]  V. Raia,et al.  BMC Infectious Diseases BioMed Central Research article , 2006 .

[51]  Gerald B. Pier,et al.  Lung Infections Associated with Cystic Fibrosis , 2002, Clinical Microbiology Reviews.

[52]  N. Høiby Epidemiological investigations of the respiratory tract bacteriology in patients with cystic fibrosis. , 2009, Acta pathologica et microbiologica Scandinavica. Section B: Microbiology and immunology.

[53]  J. Emerson,et al.  Microbiology of sputum from patients at cystic fibrosis centers in the United States. , 1998, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[54]  J. Carlin,et al.  Clinical outcome after early Pseudomonas aeruginosa infection in cystic fibrosis. , 2001, The Journal of pediatrics.

[55]  H. Ackermann,et al.  Prevalence and Clinical Significance of Staphylococcus aureus Small-Colony Variants in Cystic Fibrosis Lung Disease , 2006, Journal of Clinical Microbiology.

[56]  M. Surette,et al.  Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication , 2003, Molecular microbiology.