Dissolution Behaviors and Applications of Silicon Oxides and Nitrides in Transient Electronics

Silicon oxides and nitrides are key materials for dielectrics and encapsulation layers in a class of silicon-based high performance electronics that has ability to completely dissolve in a controlled fashion with programmable rates, when submerged in bio-fluids and/or relevant solutions. This type of technology, referred to as “transient electronics”, has potential applications in biomedical implants, environmental sensors, and other envisioned areas. The results presented here provide comprehensive studies of transient behaviors of thin films of silicon oxides and nitrides in diverse aqueous solutions at different pH scales and temperatures. The kinetics of hydrolysis of these materials depends not only on pH levels/ion concentrations of solutions and temperatures, but also on the morphology and chemistry of the films, as determined by the deposition methods and conditions. Encapsulation strategies with a combination of layers demonstrate enhancement of the lifetime of transient electronic devices, by reducing water/vapor permeation through the defects.

[1]  W. G. Worley Dissolution kinetics and mechanisms in quartz- and grainite-water systems , 1994 .

[2]  Jonathan P. Icenhower,et al.  The dissolution kinetics of amorphous silica into sodium chloride solutions: effects of temperature and ionic strength , 2000 .

[3]  W. House,et al.  Dissolution kinetics of silica between 5 and 35 °C. Application of a titrimetric method , 1992 .

[4]  R. Jaeger Introduction to microelectronic fabrication , 1987 .

[5]  Huanyu Cheng,et al.  A Physically Transient Form of Silicon Electronics , 2012, Science.

[6]  Se Hyun Kim,et al.  Inorganic/organic multilayer passivation incorporating alternating stacks of organic/inorganic multilayers for long-term air-stable organic light-emitting diodes , 2013 .

[7]  Lennart Bergström,et al.  Surface chemistry of silicon nitride powders: Electrokinetic behaviour and ESCA studies , 1990 .

[8]  Z. Bao,et al.  Organic Thin‐Film Transistors Fabricated on Resorbable Biomaterial Substrates , 2010, Advanced materials.

[9]  Justin A. Blanco,et al.  Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. , 2010, Nature materials.

[10]  S. Bauer,et al.  Biocompatible and Biodegradable Materials for Organic Field‐Effect Transistors , 2010 .

[11]  Arrelaine A. Dameron,et al.  Gas Diffusion Barriers on Polymers Using Multilayers Fabricated by Al2O3 and Rapid SiO2 Atomic Layer Deposition , 2008 .

[12]  Zhmud,et al.  Dissolution Kinetics of Silicon Nitride in Aqueous Suspension. , 1999, Journal of colloid and interface science.

[13]  Jae-Woong Jeong,et al.  Materials and Fabrication Processes for Transient and Bioresorbable High‐Performance Electronics , 2013 .

[14]  P. Dove The dissolution kinetics of quartz in aqueous mixed cation solutions , 1999 .

[15]  Wolfgang Kowalsky,et al.  Al2O3/ZrO2 Nanolaminates as Ultrahigh Gas‐Diffusion Barriers—A Strategy for Reliable Encapsulation of Organic Electronics , 2009 .

[16]  Yonggang Huang,et al.  Transient, biocompatible electronics and energy harvesters based on ZnO. , 2013, Small.

[17]  J. Babcock,et al.  Analog characteristics of metal-insulator-metal capacitors using PECVD nitride dielectrics , 2001, IEEE Electron Device Letters.

[18]  Hans-Peter Schertl,et al.  Geochim. cosmochim. acta , 1989 .

[19]  Xian Huang,et al.  Materials for Bioresorbable Radio Frequency Electronics , 2013, Advanced materials.

[20]  Paul A. Kohl,et al.  Plasma‐Enhanced Chemical Vapor Deposition of Silicon Dioxide Deposited at Low Temperatures , 1995 .

[21]  Huanyu Cheng,et al.  An Analytical Model of Reactive Diffusion for Transient Electronics , 2013 .

[22]  K. Knauss,et al.  The dissolution kinetics of quartz as a function of pH and time at 70°C , 1988 .

[23]  A. Heuberger,et al.  Anisotropic Etching of Crystalline Silicon in Alkaline Solutions I . Orientation Dependence and Behavior of Passivation Layers , 1990 .

[24]  M. Sanden,et al.  P‐111: A Thin Film Encapsulation Stack for PLED and OLED Displays , 2004 .

[25]  J. Robertson High dielectric constant oxides , 2004 .

[26]  L. Bergström,et al.  Dissolution and Deagglomeration of Silicon Nitride in Aqueous Medium , 2004 .

[27]  John A Rogers,et al.  Silicon electronics on silk as a path to bioresorbable, implantable devices. , 2009, Applied physics letters.

[28]  Sidney José Lima Ribeiro,et al.  Bacterial cellulose membrane as flexible substrate for organic light emitting devices , 2008 .

[29]  H. Lifka,et al.  34.1: Ultra‐Thin Encapsulation for Large‐Area OLED Displays , 2005 .

[30]  S. Franssila,et al.  Thin Solid Films , 2009 .

[31]  Yonggang Huang,et al.  Dissolvable Metals for Transient Electronics , 2014 .

[32]  Patricia M. Dove,et al.  The influence of the alkaline earth cations, magnesium, calcium, and barium on the dissolution kinetics of quartz , 1997 .

[33]  A. Hierlemann Integrated chemical microsensor systems in CMOS-technology , 2005, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05..