Optimizing the thermoelectric performance of InGaZnO thin films depending on crystallinity via hydrogen incorporation

[1]  H. Kimura,et al.  Crystalline IGZO ceramics (crystalline oxide semiconductor)–based devices for artificial intelligence , 2019, International Journal of Ceramic Engineering & Science.

[2]  H. Sirringhaus,et al.  Analysis of Ultrahigh Apparent Mobility in Oxide Field‐Effect Transistors , 2019, Advanced science.

[3]  Y. Uraoka,et al.  Flexible TEG Using Amorphous InGaZnO Thin Film , 2018, Journal of Electronic Materials.

[4]  Y. Uraoka,et al.  High performance top gate a-IGZO TFT utilizing siloxane hybrid material as a gate insulator , 2018, AIP Advances.

[5]  Y. Uraoka,et al.  Amorphous Thin Film for Thermoelectric Application , 2018, Journal of Physics: Conference Series.

[6]  Hee‐Ok Kim,et al.  Effect of hydrogen diffusion in an In–Ga–Zn–O thin film transistor with an aluminum oxide gate insulator on its electrical properties , 2018, RSC advances.

[7]  J. Robertson,et al.  Hydrogen and the Light-Induced Bias Instability Mechanism in Amorphous Oxide Semiconductors , 2017, Scientific Reports.

[8]  Y. Uraoka,et al.  Growth of InGaZnO nanowires via a Mo/Au catalyst from amorphous thin film , 2017 .

[9]  L. Liao,et al.  Effects of Nitrogen and Hydrogen Codoping on the Electrical Performance and Reliability of InGaZnO Thin-Film Transistors. , 2017, ACS applied materials & interfaces.

[10]  Sheng-Po Chang,et al.  Optical switch of a-IGZO TFT and triple junction photovoltaic cell , 2017 .

[11]  A. Pham,et al.  Thermoelectric Properties of Indium and Gallium Dually Doped ZnO Thin Films. , 2016, ACS applied materials & interfaces.

[12]  Shunpei Yamazaki,et al.  Physics and Technology of Crystalline Oxide Semiconductor CAAC-IGZO: Fundamentals , 2016 .

[13]  Paul Heremans,et al.  Mechanical and Electronic Properties of Thin‐Film Transistors on Plastic, and Their Integration in Flexible Electronic Applications , 2016, Advanced materials.

[14]  Xinge Yu,et al.  Thermal Conductivity Comparison of Indium Gallium Zinc Oxide Thin Films: Dependence on Temperature, Crystallinity, and Porosity , 2016 .

[15]  S. Yamazaki,et al.  Correlation between crystallinity and oxygen vacancy formation in In–Ga–Zn oxide , 2016 .

[16]  Y. Uraoka,et al.  Analysis of thermoelectric properties of amorphous InGaZnO thin film by controlling carrier concentration , 2015 .

[17]  Y. Uraoka,et al.  Thermal analysis for observing conductive filaments in amorphous InGaZnO thin film resistive switching memory , 2014 .

[18]  Masashi Tsubuku,et al.  Single crystalline In–Ga–Zn oxide films grown from c-axis aligned crystalline materials and their transistor characteristics , 2014 .

[19]  S. Yamazaki,et al.  (Invited) Crystalline Oxide Semiconductor Using CAAC-IGZO and its Application , 2014 .

[20]  Shunpei Yamazaki,et al.  Properties of crystalline In–Ga–Zn-oxide semiconductor and its transistor characteristics , 2014 .

[21]  Seokhyun Yoon,et al.  Review of solution-processed oxide thin-film transistors , 2014 .

[22]  C. Hwang,et al.  Low Temperature Measurement of the Electrical Conductivity in Amorphous InGaZnO Thin Films , 2014 .

[23]  Young-Min Choi,et al.  Metal salt-derived In–Ga–Zn–O semiconductors incorporating formamide as a novel co-solvent for producing solution-processed, electrohydrodynamic-jet printed, high performance oxide transistors , 2013 .

[24]  Po-Tsun Liu,et al.  Multilevel resistive switching memory with amorphous InGaZnO-based thin film , 2013 .

[25]  T. Yagi,et al.  Thermal Conductivity of Amorphous Indium–Gallium–Zinc Oxide Thin Films , 2013 .

[26]  Jun Koyama,et al.  15.1: Research, Development, and Application of Crystalline Oxide Semiconductor , 2012 .

[27]  H. Cho,et al.  Drastic improvement of oxide thermoelectric performance using thermal and plasma treatments of the InGaZnO thin films grown by sputtering , 2011 .

[28]  Minseong Lee,et al.  Controlling the Electrical and the Optical Properties of Amorphous IGZO Films Prepared by Using Pulsed Laser Deposition , 2011 .

[29]  T. Kamiya,et al.  Origin of definite Hall voltage and positive slope in mobility-donor density relation in disordered oxide semiconductors , 2010 .

[30]  T. Kamiya,et al.  Electronic Structures Above Mobility Edges in Crystalline and Amorphous In-Ga-Zn-O: Percolation Conduction Examined by Analytical Model , 2009, Journal of Display Technology.

[31]  A. Janotti,et al.  Hydrogen multicentre bonds. , 2007, Nature materials.

[32]  H. Ohta,et al.  Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4 , 2005 .

[33]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[34]  John B. Goodenough,et al.  X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films , 1977 .

[35]  David Adler,et al.  Electrical conductivity in disordered systems , 1973 .