Ferromagnetism in one-dimensional Hubbard model induced by the next-nearest-neighbor hopping at electron density 3/2

Ferromagnetism in the one-dimensional Hubbard model with the next-nearest-neighbor hopping is explored by using the exact-diagonalization method in a small cluster and the equation-of-motion method in the thermodynamic limit with electron density n = 3/2. With these two complementary methods, it is found that an intermediate value of the next-nearest-neighbor hopping amplitude t1 tends to stabilize the fully polarized ferromagnetic state under the condition that the on-site coulomb interaction U is sufficiently large in our model. The ground-state phase diagram of the model is presented in the t1—U plane.