Epitaxial Growth and Air‐Stability of Monolayer Antimonene on PdTe2

Monolayer antimonene is fabricated on PdTe2 by an epitaxial method. Monolayer antimonene is theoretically predicted to have a large bandgap for nanoelectronic devices. Air-exposure experiments indicate amazing chemical stability, which is great for device fabrication. A method to fabricate high-quality monolayer antimonene with several great properties for novel electronic and optoelectronic applications is provided.

[1]  Peng Cheng,et al.  Evidence of silicene in honeycomb structures of silicon on Ag(111). , 2012, Nano letters.

[2]  Axel D. Becke,et al.  A Simple Measure of Electron Localization in Atomic and Molecular-Systems , 1990 .

[3]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[4]  M. Alcamí,et al.  Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions , 2016, Advanced materials.

[5]  Dong Qian,et al.  Epitaxial growth of two-dimensional stanene. , 2015, Nature materials.

[6]  Yeliang Wang,et al.  Buckled Germanene Formation on Pt(111) , 2014, Advanced materials.

[7]  Xianping Chen,et al.  The electronic and optical properties of novel germanene and antimonene heterostructures , 2016 .

[8]  V. Ozoliņš,et al.  Tunable topological electronic structures in Sb(111) bilayers: A first-principles study , 2013 .

[9]  Q. Xue,et al.  The Coexistence of Superconductivity and Topological Order in the Bi2Se3 Thin Films , 2011, Science.

[10]  H. Zeng,et al.  Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions. , 2015, Angewandte Chemie.

[11]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[12]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[13]  Philippe Sonnet,et al.  Continuous germanene layer on Al(111). , 2015, Nano letters.

[14]  L. Meng,et al.  Buckled silicene formation on Ir(111). , 2013, Nano letters.

[15]  T. Miller,et al.  Interfacial protection of topological surface states in ultrathin Sb films. , 2012, Physical review letters.

[16]  Daniele Chiappe,et al.  Two‐Dimensional Si Nanosheets with Local Hexagonal Structure on a MoS2 Surface , 2014, Advanced materials.

[17]  X. Dai,et al.  Spontaneous Formation of a Superconductor–Topological Insulator–Normal Metal Layered Heterostructure , 2016, Advanced materials.

[18]  G. Fiori,et al.  Performance of arsenene and antimonene double-gate MOSFETs from first principles , 2016, Nature Communications.

[19]  T. Miller,et al.  Passage from spin-polarized surface states to unpolarized quantum well states in topologically nontrivial Sb films. , 2011, Physical review letters.

[20]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[21]  Hiroyuki Kawai,et al.  Experimental evidence for epitaxial silicene on diboride thin films. , 2012, Physical review letters.

[22]  Andreas Savin,et al.  Electron Localization in Solid‐State Structures of the Elements: the Diamond Structure , 1992 .

[23]  M. VanAttekumPMTh,et al.  Mg金属の光電子,Auger,電子エネルギー損失分光におけるバルクおよび表面プラズモン損失強度 , 1979 .

[24]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[25]  M. Katsnelson,et al.  Structural and Electronic Properties of Germanene on MoS_{2}. , 2016, Physical review letters.

[26]  Smith,et al.  Lattice dynamics of layered-structure compounds: PdTe2. , 1986, Physical review. B, Condensed matter.

[27]  Yeliang Wang,et al.  Two-dimensional transition metal honeycomb realized: Hf on Ir(111). , 2013, Nano letters.

[28]  Shu Zhong,et al.  Epitaxial Growth of Single Layer Blue Phosphorus: A New Phase of Two-Dimensional Phosphorus. , 2016, Nano letters.

[29]  W. Duan,et al.  Topological and electronic transitions in a Sb(111) nanofilm: The interplay between quantum confinement and surface effect , 2012 .