Spatial population dynamics: analyzing patterns and processes of population synchrony.

The search for mechanisms behind spatial population synchrony is currently a major issue in population ecology. Theoretical studies highlight how synchronizing mechanisms such as dispersal, regionally correlated climatic variables and mobile enemies might interact with local dynamics to produce different patterns of spatial covariance. Specialized statistical methods, applied to large-scale survey data, aid in testing the theoretical predictions with empirical estimates. Observational studies and experiments on the demography of local populations are paramount to identify the true ecological mechanisms. The recent achievements illustrate the power of combining theory, observation and/or experimentation and statistical modeling in the ecological research protocol.

[1]  B. Bolker,et al.  Impact of vaccination on the spatial correlation and persistence of measles dynamics. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[2]  T. Clutton‐Brock,et al.  Noise and determinism in synchronized sheep dynamics , 1998, Nature.

[3]  W. Härdle Applied Nonparametric Regression , 1991 .

[4]  Koenig Spatial autocorrelations: a reply to Bebber. , 1999, Trends in ecology & evolution.

[5]  Jan Lindström,et al.  Synchrony in population dynamics , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[6]  Peter Kareiva,et al.  Spatial ecology : the role of space in population dynamics and interspecific interactions , 1998 .

[7]  A. Sinclair,et al.  Solar Activity and Mammal Cycles in the Northern Hemisphere , 1997, The American Naturalist.

[8]  William G. Wilson,et al.  Mobility versus density-limited predator-prey dynamics on different spatial scales , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[9]  P. A. P. Moran,et al.  The statistical analysis of the Canadian Lynx cycle. , 1953 .

[10]  David A. Elston,et al.  Spatial asynchrony and periodic travelling waves in cyclic populations of field voles , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[11]  W. Sutherland,et al.  Dispersal and spatial scale affect synchrony in spatial population dynamics , 1999 .

[12]  E. Ranta,et al.  Population variability in space and time. , 2000, Trends in ecology & evolution.

[13]  Veijo Kaitala,et al.  Population variability in space and time: The dynamics of synchronous population fluctuations , 1998 .

[14]  W. Wilson,et al.  Pattern Formation and the Spatial Scale of Interaction between Predators and Their Prey. , 1998, Theoretical population biology.

[15]  Ransom A. Myers,et al.  Spatial scales of interannual recruitment variations of marine, anadromous, and freshwater fish , 1997 .

[16]  P. Bacon,et al.  Population Dynamics of Rabies in Wildlife , 1985 .

[17]  D. Moss,et al.  Spatial synchrony and asynchrony in butterfly population dynamics , 1996 .

[18]  Maron,et al.  Spatial pattern formation in an insect host-parasitoid system , 1997, Science.

[19]  D. Padilla,et al.  Ecological neighborhoods: scaling environmental patterns , 1987 .

[20]  G. Barrett,et al.  Landscape Ecology of Small Mammals , 1999, Springer New York.

[21]  Takashi Saitoh,et al.  SYNCHRONY AND SCALING IN DYNAMICS OF VOLES AND MICE IN NORTHERN JAPAN , 1999 .

[22]  R. Ims,et al.  Spatial Demographic Synchrony in Fragmented Populations , 1999 .

[23]  Ricard V. Solé,et al.  Modeling spatiotemporal dynamics in ecology , 1998 .

[24]  T. Royama,et al.  Analytical Population Dynamics , 1994, Population and Community Biology Series.

[25]  Jane Molofsky,et al.  POPULATION DYNAMICS AND PATTERN FORMATION IN THEORETICAL POPULATIONS , 1994 .

[26]  M. Bulmer Phase Relations in the Ten-Year Cycle , 1975 .

[27]  W. Schaffer,et al.  Chaos reduces species extinction by amplifying local population noise , 1993, Nature.

[28]  E. Ranta,et al.  Dynamics of Canadian lynx populations in space and time , 1997 .

[29]  Koenig,et al.  Spatial autocorrelation of ecological phenomena. , 1999, Trends in ecology & evolution.

[30]  Peter Hall,et al.  Properties of nonparametric estimators of autocovariance for stationary random fields , 1994 .

[31]  William Gurney,et al.  Circles and spirals: population persistence in a spatially explicit predator-prey model , 1998 .

[32]  J. E. Stacy,et al.  Lack of concordance between mtDNA gene flow and population density fluctuations in the bank vole , 1997, Molecular ecology.

[33]  N. Yoccoz,et al.  Studying Transfer Processes in Metapopulations: Emigration, Migration, and Colonization , 1997 .

[34]  M. Gilpin,et al.  Metapopulation Biology: Ecology, Genetics, and Evolution , 1997 .

[35]  Rolf A. Ims,et al.  Spatial and Temporal Patterns of Small‐Rodent Population Dynamics at a Regional Scale , 1996 .

[36]  W. Murdoch,et al.  Refuge Dynamics and Metapopulation Dynamics: An Experimental Test , 1996, The American Naturalist.

[37]  Charles Hyde Smith Spatial trends in Canadian Snowshoe Hare, Lepus americanus, population cycles , 1983, The Canadian field-naturalist.

[38]  P. Wolf,et al.  A Quantitative Measurement of Spatial Orderin Ventricular Fibrillation , 1993, Journal of cardiovascular electrophysiology.

[39]  Rolf A. Ims,et al.  geographical synchrony in microtine population cycles: a theoretical evaluation of the role of nomadic avian predators , 1990 .

[40]  Adam Kleczkowski,et al.  Seasonality and extinction in chaotic metapopulations , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[41]  B. Bolker,et al.  Using Moment Equations to Understand Stochastically Driven Spatial Pattern Formation in Ecological Systems , 1997, Theoretical population biology.

[42]  A. Hastings,et al.  Unexpected spatial patterns in an insect outbreak match a predator diffusion model , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.