Scheduling Malleable Parallel Tasks: An Asymptotic Fully Polynomial-Time Approximation Scheme

A malleable parallel task is one whose execution time is a function of the number of (identical) processors allotted to it. We study the problem of scheduling a set of n independent malleable tasks on an arbitrary number m of parallel processors and propose an asymptotic fully polynomial time approximation scheme. For any fixed ? > 0, the algorithm computes a non-preemptive schedule of length at most (1 + ?) times the optimum (plus an additive term) and has running time polynomial in n, m and 1/?.

[1]  Bernhard Korte,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[2]  Ronald L. Graham,et al.  Bounds for Multiprocessor Scheduling with Resource Constraints , 1975, SIAM J. Comput..

[3]  Philip S. Yu,et al.  Approximate algorithms scheduling parallelizable tasks , 1992, SPAA '92.

[4]  Joseph Y.-T. Leung,et al.  Complexity of Scheduling Parallel Task Systems , 1989, SIAM J. Discret. Math..

[5]  Leonid Khachiyan,et al.  Approximate Max-Min Resource Sharing for Structured Concave Optimization , 2000, SIAM J. Optim..

[6]  Denis Trystram,et al.  Efficient approximation algorithms for scheduling malleable tasks , 1999, SPAA '99.

[7]  Jacek Blazewicz,et al.  Scheduling Multiprocessor Tasks to Minimize Schedule Length , 1986, IEEE Transactions on Computers.

[8]  A. Steinberg,et al.  A Strip-Packing Algorithm with Absolute Performance Bound 2 , 1997, SIAM J. Comput..

[9]  Maciej Drozdowski On the complexity of multiprocessor task scheduling , 1995 .

[10]  Klaus Jansen,et al.  Experimental and Efficient Algorithms , 2003, Lecture Notes in Computer Science.

[11]  Eugene L. Lawler,et al.  Fast approximation algorithms for knapsack problems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[12]  Klaus Jansen,et al.  Linear-Time Approximation Schemes for Scheduling Malleable Parallel Tasks , 1999, SODA '99.

[13]  Jan Karel Lenstra,et al.  Approximation algorithms for scheduling unrelated parallel machines , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[14]  Ronald L. Rivest,et al.  Orthogonal Packings in Two Dimensions , 1980, SIAM J. Comput..

[15]  Klaus Jansen,et al.  Preemptive Parallel Task Scheduling in O(n)+Poly(m) Time , 2000, ISAAC.

[16]  David S. Johnson,et al.  Complexity Results for Multiprocessor Scheduling under Resource Constraints , 1975, SIAM J. Comput..

[17]  Jacek Blazewicz,et al.  Scheduling under resource constraints - deterministic models , 1986 .

[18]  Richard M. Karp,et al.  An efficient approximation scheme for the one-dimensional bin-packing problem , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[19]  Andrew Chi-Chih Yao,et al.  Resource Constrained Scheduling as Generalized Bin Packing , 1976, J. Comb. Theory A.

[20]  Prithviraj Banerjee,et al.  An Approximate Algorithm for the Partitionable Independent Task Scheduling Problem , 1990, ICPP.

[21]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[22]  Klaus Jansen,et al.  Computing optimal preemptive schedules for parallel tasks: linear programming approaches , 2003, Math. Program..

[23]  Éva Tardos,et al.  Fast Approximation Algorithms for Fractional Packing and Covering Problems , 1995, Math. Oper. Res..

[24]  Maciej Drozdowski,et al.  Scheduling multiprocessor tasks -- An overview , 1996 .

[25]  Robert E. Tarjan,et al.  Performance Bounds for Level-Oriented Two-Dimensional Packing Algorithms , 1980, SIAM J. Comput..

[26]  Ingo Schiermeyer,et al.  Reverse-Fit: A 2-Optimal Algorithm for Packing Rectangles , 1994, ESA.

[27]  Claire Mathieu,et al.  A Near-Optimal Solution to a Two-Dimensional Cutting Stock Problem , 2000, Math. Oper. Res..

[28]  Prasoon Tiwari,et al.  Scheduling malleable and nonmalleable parallel tasks , 1994, SODA '94.