Ceria Doped with Zirconium and Lanthanide Oxides to Enhance Solar Thermochemical Production of Fuels

Developing an efficient redox material is crucial for thermochemical cycles that produce solar fuels (e.g., H2 and CO), enabling a sustainable energy supply. In this study, the effects of varying the rare-earth content y in Ce0.85-yZr0.15REyO2–0.5y with RE = Y, La, Sm and Gd on the fuel productivity and long-term stability were investigated. Compared to the none-RE-doped reference material, Ce0.85Zr0.15O2, none of the compositions exhibits higher performances. However, long-term cycling of more than 80 cycles reveals enhanced performance due to rare-earth doping. Ce0.85Zr0.15O2 suffers from linear degradation of the yields and of the CO:O2 ratio r, which is attributed to declining oxidation kinetics, whereas for instance Ce0.82Zr0.15Sm0.03O1.99 features stable yields and kinetics. The suggested rationale behind is found in a vacancy-depleted region that occurs in the grains of Ce0.85Zr0.15O2. While cycling, the specific surface decreases and the impact of these regions on the reaction rate increases which...

[1]  Peter G. Loutzenhiser,et al.  Review of the Two-Step H2O/CO2-Splitting Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions , 2010, Materials.

[2]  W. Chueh,et al.  A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  Christian Sattler,et al.  Test operation of a 100 kW pilot plant for solar hydrogen production from water on a solar tower , 2011 .

[4]  Peter G. Loutzenhiser,et al.  Solar Syngas Production via H2O/CO2-Splitting Thermochemical Cycles with Zn/ZnO and FeO/Fe3O4 Redox Reactions† , 2010 .

[5]  Christian Sattler,et al.  Concept analysis of an indirect particle-based redox process for solar-driven H2O/CO2 splitting , 2015 .

[6]  A. Steinfeld,et al.  Syngas production by simultaneous splitting of H2O and CO2via ceria redox reactions in a high-temperature solar reactor , 2012 .

[7]  G. Flamant,et al.  Novel two-step SnO2/SnO water-splitting cycle for solar thermochemical production of hydrogen , 2008 .

[8]  Elyeser Spiegler,et al.  Direct solar thermal splitting of water and on-site separation of the products. III. , 2000 .

[9]  A. Frei,et al.  Comparative experimental investigations of the water-splitting reaction with iron oxide Fe1−yO and iron manganese oxides (Fe1−xMnx)1−yO , 1995 .

[10]  K. Balani,et al.  Doped zirconia and ceria-based electrolytes for solid oxide fuel cells: a review , 2012 .

[11]  Gilles Flamant,et al.  Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides , 2006 .

[12]  Decomposition of Zn-ferrite for O2 generation by concentrated solar radiation , 2004 .

[13]  R. J. Panlener,et al.  A thermodynamic study of nonstoichiometric cerium dioxide , 1975 .

[14]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[15]  R. Gorte,et al.  Oxidation entropies and enthalpies of ceria–zirconia solid solutions , 2007 .

[16]  G. Vdovin,et al.  Kinetics of interaction of gas phase oxygen with cerium-gadolinium oxide , 2012, Russian Journal of Electrochemistry.

[17]  M. Centeno,et al.  In Situ Characterization of the Dynamic Gold−Support Interaction over Ceria Modified Eu3+. Influence of the Oxygen Vacancies on the CO Oxidation Reaction , 2010 .

[18]  Alan W. Weimer,et al.  Solar‐thermal production of renewable hydrogen , 2009 .

[19]  Ulrich Vogt,et al.  Solar Thermochemical CO2 Splitting Utilizing a Reticulated Porous Ceria Redox System , 2012 .

[20]  Hua Wang,et al.  Syngas production from methane and air via a redox process using Ce-Fe mixed oxides as oxygen carriers , 2010 .

[21]  Aldo Steinfeld,et al.  Thermodynamic Analysis of Cerium-Based Oxides for Solar Thermochemical Fuel Production , 2012 .

[22]  John Mantzaras,et al.  Catalytic Combustion of Syngas , 2008 .

[23]  Robert Pitz-Paal,et al.  Development of a system model for a hydrogen production process on a solar tower , 2012 .

[24]  A. Steinfeld Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions , 2002 .

[25]  Christian Sattler,et al.  Solar water splitting for hydrogen production with monolithic reactors , 2005 .

[26]  S. Abanades,et al.  Dopant Incorporation in Ceria for Enhanced Water-Splitting Activity during Solar Thermochemical Hydrogen Generation , 2012 .

[27]  M. Centeno,et al.  Structural and catalytic properties of lanthanide (La, Eu, Gd) doped ceria , 2011 .

[28]  S. Bose,et al.  Free-Standing Lead Zirconate Titanate Nanoparticles: Low-Temperature Synthesis and Densification , 2004 .

[29]  Siglinda Perathoner,et al.  Towards solar fuels from water and CO2. , 2010, ChemSusChem.

[30]  S. Brendelberger,et al.  Solid Phase Heat Recovery and Multi Chamber Reduction for Redox Cycles , 2014 .

[31]  Ying Xin,et al.  Rare-earth (Nd, Sm, Eu, Gd and Y) enhanced CeO2 solid solution nanorods prepared by co-precipitation without surfactants , 2010 .

[32]  R. Pitz-Paal,et al.  Heat recovery concept for thermochemical processes using a solid heat transfer medium , 2014 .

[33]  W. Chueh,et al.  High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria , 2010, Science.

[34]  F. Fischer,et al.  Über die direkte Synthese von Erdöl‐Kohlenwasserstoffen bei gewöhnlichem Druck. (Erste Mitteilung) , 1926 .

[35]  Tatsuya Kodama,et al.  Thermochemical hydrogen production by a redox system of ZrO2-supported Co(II)-ferrite , 2004 .

[36]  A. J. Lowe,et al.  Analytical Model of CeO2 Oxidation and Reduction , 2013 .

[37]  Adesoji A. Adesina,et al.  Hydrocarbon synthesis via Fischer-Tropsch reaction: travails and triumphs , 1996 .

[38]  Yutaka Tamaura,et al.  Production of solar hydrogen by a novel, 2-step, water-splitting thermochemical cycle , 1995 .

[39]  H. Kaneko,et al.  Study on solid-state chemistry of the ZnO/Fe3O4/H2O system for H2 production at 973–1073 K , 2004 .

[40]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[41]  H. Kaneko,et al.  Reduction reactivity of CeO2–ZrO2 oxide under high O2 partial pressure in two-step water splitting process , 2011 .

[42]  A. L. Gal,et al.  Reactivity of Doped Ceria-Based Mixed Oxides for Solar Thermochemical Hydrogen Generation via Two-Step Water-Splitting Cycles , 2013 .

[43]  L. Chen,et al.  Studies on redox H2–CO2 cycle on CoCrxFe2−xO4 , 2009 .

[44]  S. Haile,et al.  An electrical conductivity relaxation study of oxygen transport in samarium doped ceria , 2013, 1309.0064.

[45]  M. Dry,et al.  The Fischer–Tropsch process: 1950–2000 , 2002 .

[46]  A. Steinfeld Solar-processed metals as clean energy carriers and water-splitters , 1998 .

[47]  Robert Pitz-Paal,et al.  Thermogravimetric Analysis of Zirconia-Doped Ceria for Thermochemical Production of Solar Fuel , 2013 .

[48]  T. Fletcher,et al.  Modeling the direct solar conversion of CO2 to CO and O2 , 2004 .

[49]  Nathan P. Siegel,et al.  A New Reactor Concept for Efficient Solar-Thermochemical Fuel Production , 2013 .

[50]  Y. Xiong,et al.  Protons in ceria and their roles in SOFC electrode reactions from thermodynamic and SIMS analyses , 2004 .

[51]  Robert Pitz-Paal,et al.  T–S diagram efficiency analysis of two-step thermochemical cycles for solar water splitting under various process conditions , 2014 .

[52]  Jens R. Rostrup-Nielsen,et al.  Syngas in perspective , 2002 .

[53]  Tatsuya Kodama,et al.  Thermochemical cycles for high-temperature solar hydrogen production. , 2007 .

[54]  G. Flor,et al.  Electrical properties of the ZrO2-CeO2 system , 1996 .

[55]  G. Flamant,et al.  Investigation of reactive cerium-based oxides for H2 production by thermochemical two-step water-splitting , 2010 .

[56]  Gilles Flamant,et al.  Two-step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production , 2007 .

[57]  H. Kaneko,et al.  Two-Step Water Splitting Process With Solid Solution of YSZ and Ni-Ferrite for Solar Hydrogen Production (ISEC 2005-76151) , 2008 .

[58]  S. Abanades,et al.  Catalytic investigation of ceria-zirconia solid solutions for solar hydrogen production , 2011 .

[59]  J. Kašpar,et al.  Heterogeneous environmental catalysis – a gentle art: CeO2–ZrO2 mixed oxides as a case history , 2005 .

[60]  Christian Sattler,et al.  Solar Hydrogen Production by a Two-Step Cycle Based on Mixed Iron Oxides , 2006 .

[61]  M. Giona,et al.  Some Insight into the Effects of Oxygen Diffusion in the Reduction Kinetics of Ceria , 2001 .

[62]  R. Pitz-Paal,et al.  Thermodynamics of CeO2 Thermochemical Fuel Production , 2015 .

[63]  Chong-il Lee,et al.  Reactivity of CeO2-based ceramics for solar hydrogen production via a two-step water-splitting cycle with concentrated solar energy , 2011 .

[64]  Sossina M. Haile,et al.  Impedance Spectroscopy as a Tool for Chemical and Electrochemical Analysis of Mixed Conductors: A Case Study of Ceria , 2005 .

[65]  T. Nakamura,et al.  Hydrogen production from water utilizing solar heat at high temperatures , 1977 .

[66]  H. Kaneko,et al.  Two-step water-splitting at 1273–1623K using yttria-stabilized zirconia-iron oxide solid solution via co-precipitation and solid-state reaction , 2008 .

[67]  G. Flamant,et al.  CO2 and H2O Splitting for Thermochemical Production of Solar Fuels Using Nonstoichiometric Ceria and Ceria/Zirconia Solid Solutions , 2011 .

[68]  Christopher J. Koroneos,et al.  Life cycle assessment of hydrogen fuel production processes , 2004 .

[69]  R. Pitz-Paal,et al.  Kinetic investigations of the hydrogen production step of a thermochemical cycle using mixed iron oxides coated on ceramic substrates , 2009 .

[70]  N. Gokon,et al.  Ferrite/zirconia-coated foam device prepared by spin coating for solar demonstration of thermochemic , 2011 .