CARMA-NRO Orion Survey: Unbiased Survey of Dense Cores and Core Mass Functions in Orion A

The mass distribution of dense cores is a potential key to understanding the process of star formation. Applying dendrogram analysis to the CARMA-NRO Orion C18O (J = 1–0) data, we identify 2342 dense cores, about 22% of which have virial ratios smaller than 2 and can be classified as gravitationally bound cores. The derived core mass function (CMF) for bound starless cores that are not associate with protostars has a slope similar to Salpeter’s initial mass function (IMF) for the mass range above 1 M ⊙, with a peak at ∼0.1 M ⊙. We divide the cloud into four parts based on decl., OMC-1/2/3, OMC-4/5, L1641N/V380 Ori, and L1641C, and derive the CMFs in these regions. We find that starless cores with masses greater than 10 M ⊙ exist only in OMC-1/2/3, whereas the CMFs in OMC-4/5, L1641N, and L1641C are truncated at around 5–10 M ⊙. From the number ratio of bound starless cores and Class II objects in each subregion, the lifetime of bound starless cores is estimated to be 5–30 freefall times, consistent with previous studies for other regions. In addition, we discuss core growth by mass accretion from the surrounding cloud material to explain the coincidence of peak masses between IMFs and CMFs. The mass accretion rate required for doubling the core mass within a core lifetime is larger than that of Bondi–Hoyle accretion by a factor of order 2. This implies that more dynamical accretion processes are required to grow cores.

[1]  P. Andre',et al.  Variation of the core lifetime and fragmentation scale in molecular clouds as an indication of ambipolar diffusion , 2021, Astronomy & Astrophysics.

[2]  P. Koch,et al.  The JCMT BISTRO Survey: The Distribution of Magnetic Field Strengths toward the OMC-1 Region , 2021, The Astrophysical Journal.

[3]  H. Arce,et al.  Evidence of Core Growth in the Dragon Infrared Dark Cloud: A Path for Massive Star Formation , 2021, The Astrophysical Journal.

[4]  R. Kawabe,et al.  The C18O core mass function toward Orion A: Single-dish observations , 2021, 2103.08526.

[5]  R. Klessen,et al.  The Core Mass Function in the Orion Nebula Cluster Region: What Determines the Final Stellar Masses? , 2021, 2103.08527.

[6]  Yuxin He,et al.  Studies of the distinct regions due to CO selective dissociation in the Aquila molecular cloud , 2020, Astronomy & Astrophysics.

[7]  Y. Fukui,et al.  Cloud–cloud collisions and triggered star formation , 2020, 2009.05077.

[8]  V. Pelkonen,et al.  From the CMF to the IMF: beyond the core-collapse model , 2020, Monthly Notices of the Royal Astronomical Society.

[9]  A. Kawamura,et al.  FRagmentation and Evolution of Dense Cores Judged by ALMA (FREJA). I. Overview: Inner ∼1000 au Structures of Prestellar/Protostellar Cores in Taurus , 2020, The Astrophysical Journal.

[10]  J. Bally,et al.  The CARMA–NRO Orion Survey: Protostellar Outflows, Energetics, and Filamentary Alignment , 2020, The Astrophysical Journal.

[11]  P. McGehee,et al.  Star cluster formation in Orion A , 2020, 2004.03668.

[12]  H. Liu,et al.  Physical properties of the star-forming clusters in NGC 6334 , 2019, Astronomy & Astrophysics.

[13]  M. Juvela,et al.  The Origin of Massive Stars: The Inertial-inflow Model , 2019, The Astrophysical Journal.

[14]  J. Bally,et al.  Nobeyama 45 m mapping observations toward Orion A. I. Molecular outflows , 2019, Publications of the Astronomical Society of Japan.

[15]  Y. Contreras,et al.  The ALMA Survey of 70 μm Dark High-mass Clumps in Early Stages (ASHES). I. Pilot Survey: Clump Fragmentation , 2019, The Astrophysical Journal.

[16]  S. Okumura,et al.  Nobeyama 45 m mapping observations toward the nearby molecular clouds Orion A, Aquila Rift, and M17: Project overview , 2019, Publications of the Astronomical Society of Japan.

[17]  R. Kawabe,et al.  Nobeyama 45 m mapping observations toward Orion A. II. Classification of cloud structures and variation of the 13CO/C18O abundance ratio due to far-UV radiation , 2019, Publications of the Astronomical Society of Japan.

[18]  A. Palau,et al.  Global hierarchical collapse in molecular clouds. Towards a comprehensive scenario , 2019, Monthly Notices of the Royal Astronomical Society.

[19]  Shuo Kong The Core Mass Function in the Infrared Dark Cloud G28.37+0.07 , 2019, The Astrophysical Journal.

[20]  J. Goicoechea,et al.  Disruption of the Orion molecular core 1 by wind from the massive star θ1 Orionis C , 2019, Nature.

[21]  P. Hopkins,et al.  On the nature of variations in the measured star formation efficiency of molecular clouds , 2018, Monthly Notices of the Royal Astronomical Society.

[22]  M. Lombardi,et al.  3D shape of Orion A from Gaia DR2 , 2018, Astronomy & Astrophysics.

[23]  Mengyao Liu,et al.  The Core Mass Function across Galactic Environments. II. Infrared Dark Cloud Clumps , 2018, The Astrophysical Journal.

[24]  A. Whitworth,et al.  The unexpectedly large proportion of high-mass star-forming cores in a Galactic mini-starburst , 2018, Nature Astronomy.

[25]  Astronomy,et al.  The CARMA-NRO Orion Survey , 2018, Astronomy & Astrophysics.

[26]  Blakesley Burkhart,et al.  The Star Formation Rate in the Gravoturbulent Interstellar Medium , 2018, The Astrophysical Journal.

[27]  J. Alves,et al.  An ALMA study of the Orion Integral Filament: I. Evidence for narrow fibers in a massive cloud , 2018, 1801.01500.

[28]  Jonathan C. Tan,et al.  The Core Mass Function in the Massive Protocluster G286.21+0.17 Revealed by ALMA , 2017, 1706.06584.

[29]  Y. Fukui,et al.  Molecular clouds in the NGC 6334 and NGC 6357 region: Evidence for a 100 pc-scale cloud-cloud collision triggering the Galactic mini-starbursts , 2017, 1706.05771.

[30]  A. Ginsburg,et al.  The physical and chemical structure of Sagittarius B2 - II. Continuum millimeter emission of Sgr B2(M) and Sgr B2(N) with ALMA , 2017, 1704.01805.

[31]  J. Alves,et al.  Gravitational collapse of the OMC-1 region , 2017, 1703.03464.

[32]  Benjamin Wu,et al.  GMC Collisions as Triggers of Star Formation. II. 3D Turbulent, Magnetized Simulations , 2016, The Astrophysical Journal.

[33]  S. T. Megeath,et al.  THE HERSCHEL ORION PROTOSTAR SURVEY: SPECTRAL ENERGY DISTRIBUTIONS AND FITS USING A GRID OF PROTOSTELLAR MODELS , 2016, 1602.07314.

[34]  M. Lombardi,et al.  VISION − Vienna survey in Orion - I. VISTA Orion A Survey , 2016, 1601.01687.

[35]  N. Peretto,et al.  Possible link between the power spectrum of interstellar filaments and the origin of the prestellar core mass function , 2015, 1509.01819.

[36]  N. Peretto,et al.  A census of dense cores in the Aquila cloud complex: SPIRE/PACS observations from the Herschel Gould Belt survey , 2015, 1507.05926.

[37]  Christoph Federrath,et al.  Inefficient star formation through turbulence, magnetic fields and feedback , 2015, 1504.03690.

[38]  R. Kawabe,et al.  CATALOG OF DENSE CORES IN THE ORION A GIANT MOLECULAR CLOUD , 2015, 1502.03100.

[39]  R. Kawabe,et al.  High abundance ratio of 13CO to C18O toward photon-dominated regions in the Orion-A giant molecular cloud , 2014, 1403.2930.

[40]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[41]  Astrophysics,et al.  Properties of dense cores in clustered massive star-forming regions at high angular resolution , 2013, 1304.5136.

[42]  G. Fuller,et al.  CO depletion in the Gould Belt clouds , 2012 .

[43]  Tomoaki Matsumoto,et al.  Impact of protostellar outflow on star formation: effects of the initial cloud mass , 2011, 1108.3564.

[44]  J. Bally Astrophysics: Waves on Orion's shores , 2010, Nature.

[45]  H. Roussel,et al.  From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.

[46]  D. Ojha,et al.  The IMF of stellar clusters: effects of accretion and feedback , 2009, 0908.4522.

[47]  K. Sunada,et al.  A Survey of Dense Cores in the Orion A Cloud , 2009 .

[48]  D. Padgett,et al.  THE SPITZER c2d LEGACY RESULTS: STAR-FORMATION RATES AND EFFICIENCIES; EVOLUTION AND LIFETIMES , 2008, 0811.1059.

[49]  J. Kauffmann,et al.  Structural Analysis of Molecular Clouds: Dendrograms , 2008, 0802.2944.

[50]  C. McKee,et al.  A minimum column density of 1 g cm-2 for massive star formation , 2008, Nature.

[51]  K. Menten,et al.  The distance to the Orion Nebula , 2007, 0709.0485.

[52]  E. Ostriker,et al.  Theory of Star Formation , 2007, 0707.3514.

[53]  M. Lombardi,et al.  The mass function of dense molecular cores and the origin of the IMF , 2006, astro-ph/0612126.

[54]  D. Ward-Thompson,et al.  A SCUBA survey of Orion -the low-mass end of the core mass function , 2006, astro-ph/0611164.

[55]  L. Hartmann,et al.  On the Structure of the Orion A Cloud and the Formation of the Orion Nebula Cluster , 2006, astro-ph/0609679.

[56]  I. Bonnell,et al.  Star formation through gravitational collapse and competitive accretion , 2006, astro-ph/0604615.

[57]  A. Noriega-Crespo,et al.  A Mid-Infrared Survey of L1641N with ISOCAM , 2004 .

[58]  Yasuo Fukui,et al.  A Complete Search for Dense Cloud Cores in Taurus , 2002 .

[59]  S. Inutsuka The Mass Function of Molecular Cloud Cores , 2001 .

[60]  C. McKee,et al.  Efficiencies of Low-Mass Star and Star Cluster Formation , 2000, astro-ph/0007383.

[61]  H. Ogawa,et al.  The Most Luminous Protostars in Molecular Clouds: A Hint to Understand the Stellar Initial Mass Function , 1999 .

[62]  P. Caselli,et al.  CO Depletion in the Starless Cloud Core L1544 , 1999 .

[63]  D. Ward-Thompson,et al.  A far-infrared survey of molecular cloud cores , 1999, astro-ph/9908230.

[64]  P. Myers,et al.  A Catalog of Optically Selected Cores , 1999, astro-ph/9901175.

[65]  Leo Blitz,et al.  DETERMINING STRUCTURE IN MOLECULAR CLOUDS , 1994 .

[66]  K. Hodapp,et al.  Infrared and optical imaging of IRAS sources with CO outflow - A snapshot of early star formation , 1993 .

[67]  F. Bertoldi,et al.  Pressure-confined clumps in magnetized molecular clouds , 1992 .

[68]  T. Iwata,et al.  Discovery of seven bipolar outflows by an unbiased survey. [Of carbon monoxide in Orion molecular clouds] , 1986 .

[69]  C. Beichman,et al.  Candidate solar-type protostars in nearby molecular cloud cores , 1986 .

[70]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[71]  E. Salpeter The Luminosity function and stellar evolution , 1955 .