Local excitation-lateral inhibition interaction yields oscillatory instabilities in nonlocally interacting systems involving finite propagation delay

The work studies wave activity in spatial systems, which exhibit nonlocal spatial interactions at the presence of a finite propagation speed. We find analytically propagation delay-induced oscillatory instabilities for various local excitatory and lateral inhibitory spatial interactions. Further, the work shows for general nonlocal interactions analytically that the first kernel Fourier moment defines the stability thresholds. The final numerical simulation confirms the analytical results.

[1]  Gaute T. Einevoll,et al.  Localized activity patterns in two-population neuronal networks , 2005 .

[2]  P. Bressloff SYNAPTICALLY GENERATED WAVE PROPAGATION IN EXCITABLE NEURAL MEDIA , 1999 .

[3]  Carlo R. Laing,et al.  PDE Methods for Nonlocal Models , 2003, SIAM J. Appl. Dyn. Syst..

[4]  Kongqing Yang,et al.  Lattice scale-free networks with weighted linking. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  H. Haken,et al.  Synergetics , 1988, IEEE Circuits and Devices Magazine.

[6]  M. E. Galassi,et al.  GNU SCIENTI C LIBRARY REFERENCE MANUAL , 2005 .

[7]  Axel Hutt,et al.  Analysis of nonlocal neural fields for both general and gamma-distributed connectivities , 2005 .

[8]  J. Jost,et al.  Evolving networks with distance preferences. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[10]  E. Lazzaro,et al.  Fast heat pulse propagation in hot plasmas , 1998 .

[11]  Stephen Coombes,et al.  Waves, bumps, and patterns in neural field theories , 2005, Biological Cybernetics.

[12]  Axel Hutt,et al.  Generalization of the reaction-diffusion, Swift-Hohenberg, and Kuramoto-Sivashinsky equations and effects of finite propagation speeds. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  J. Schnakenberg,et al.  G. Nicolis und I. Prigogine: Self‐Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations. J. Wiley & Sons, New York, London, Sydney, Toronto 1977. 491 Seiten, Preis: £ 20.–, $ 34.– , 1978 .

[14]  Ralf Metzler,et al.  FRACTIONAL DIFFUSION, WAITING-TIME DISTRIBUTIONS, AND CATTANEO-TYPE EQUATIONS , 1998 .

[15]  M. K. Moallemi,et al.  Experimental evidence of hyperbolic heat conduction in processed meat , 1995 .

[16]  W. CLEMENT LEY,et al.  Brain Dynamics , 1880, Nature.

[17]  J. Leo van Hemmen,et al.  Continuum limit of discrete neuronal structures: is cortical tissue an “excitable” medium? , 2004, Biological Cybernetics.

[18]  Carlo R. Laing,et al.  Spiral Waves in Nonlocal Equations , 2005, SIAM J. Appl. Dyn. Syst..

[19]  Axel Hutt,et al.  Effects of distributed transmission speeds on propagating activity in neural populations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  J. K. Chen,et al.  Thermal Lagging in Random Media , 1998 .

[21]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[22]  Axel Hutt,et al.  Neural Fields with Distributed Transmission Speeds and Long-Range Feedback Delays , 2006, SIAM J. Appl. Dyn. Syst..

[23]  I M Sokolov,et al.  Evolving networks with disadvantaged long-range connections. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  G. Lepage A new algorithm for adaptive multidimensional integration , 1978 .

[25]  Thomas Wennekers,et al.  Pattern formation in intracortical neuronal fields , 2003, Network.

[26]  P. Matthews,et al.  Dynamic instabilities in scalar neural field equations with space-dependent delays , 2007 .

[27]  Herbert J. Carlin,et al.  Network theory , 1964 .

[28]  A. Hutt Effects of nonlocal feedback on traveling fronts in neural fields subject to transmission delay. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Physics Letters , 1962, Nature.

[30]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  Bard Ermentrout,et al.  Spatially Structured Activity in Synaptically Coupled Neuronal Networks: I. Traveling Fronts and Pulses , 2001, SIAM J. Appl. Math..

[33]  B. M. Fulk MATH , 1992 .

[34]  Stephen Coombes,et al.  The importance of different timings of excitatory and inhibitory pathways in neural field models , 2006, Network.