Nonexistence and optimal decay of supersolutions to Choquard equations in exterior domains

We consider a semilinear elliptic problem with a nonlinear term which is the product of a power and the Riesz potential of a power. This family of equations includes the Choquard or nonlinear Schrodinger-Newton equation. We show that for some values of the parameters the equation does not have nontrivial nonnegative supersolutions in exterior domains. The same techniques yield optimal decay rates when supersolutions exist. © 2013 Elsevier Inc.

[1]  R. Frank A Simple Proof of Hardy-Lieb-Thirring Inequalities , 2008, 0809.3797.

[2]  Topics in the theory of positive solutions of second-order elliptic and parabolic partial differential equations , 2005, math/0512430.

[3]  Pavol Quittner,et al.  Superlinear Parabolic Problems , 2007, Birkhäuser Advanced Texts Basler Lehrbücher.

[4]  M. Fall,et al.  Sharp Nonexistence Results for a Linear Elliptic Inequality Involving Hardy and Leray Potentials , 2010, 1006.5603.

[5]  Elliott H. Lieb Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation , 1977 .

[6]  E. Stein,et al.  Fractional Integrals on n-Dimensional Euclidean Space , 1958 .

[7]  S. I. Pekar,et al.  Untersuchungen über die Elektronentheorie der Kristalle , 1954 .

[8]  Tosio Kato Growth properties of solutions of the reduced wave equation with a variable coefficient , 1959 .

[9]  Jean Van Schaftingen,et al.  Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics , 2012, 1205.6286.

[10]  M. Riesz L'intégrale de Riemann-Liouville et le problème de Cauchy , 1949 .

[11]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[12]  E. Lieb,et al.  Exact Ground State Energy of the Strong-Coupling Polaron , 1995, cond-mat/9512112.

[13]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[14]  S. Secchi A note on Schrödinger―Newton systems with decaying electric potential , 2009, 0908.3768.

[15]  A. Ambrosetti,et al.  Bound states of nonlinear Schrödinger equations with potentials vanishing at infinity , 2006 .

[16]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[17]  Jean Van Schaftingen,et al.  Semiclassical stationary states for nonlinear Schrödinger equations with fast decaying potentials , 2009, 0902.0722.

[18]  P. Lions The concentration-compactness principle in the Calculus of Variations , 1984 .

[19]  Marc Vuffray,et al.  Stationary solutions of the Schrödinger-Newton model---an ODE approach , 2007, Differential and Integral Equations.

[20]  I. Herbst Spectral theory of the operator (p2+m2)1/2−Ze2/r , 1977 .

[21]  Irene M. Moroz,et al.  An analytical approach to the Schrödinger-Newton equations , 1999 .

[22]  V. Kondratiev,et al.  Second-order semilinear elliptic inequalities in exterior domains , 2003 .

[23]  Hans L. Cycon,et al.  Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .

[24]  Shmuel Agmon,et al.  Bounds on exponential decay of eigenfunctions of Schrödinger operators , 1985 .

[25]  G. Caristi,et al.  Liouville theorems for some nonlinear inequalities , 2008 .

[26]  G. P. Menzala,et al.  On regular solutions of a nonlinear equation of Choquard's type , 1980, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[27]  H. Brezis,et al.  Remarks on the strong maximum principle , 2003, Differential and Integral Equations.

[28]  Irene M. Moroz,et al.  Spherically symmetric solutions of the Schrodinger-Newton equations , 1998 .

[29]  A. Ambrosetti,et al.  Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity , 2005 .

[30]  B. Gidas Symmetry properties and isolated singularities of positive solutions of nonlinear elliptic equations , 1980 .

[31]  Enno Lenzmann,et al.  Uniqueness of ground states for pseudorelativistic Hartree equations , 2008, 0801.3976.

[32]  P. Lions,et al.  The Choquard equation and related questions , 1980 .

[33]  H. Brezis,et al.  On a semilinear elliptic equation with inverse-square potential , 2005 .

[34]  S. Lyakhova,et al.  Positive solutions to singular semilinear elliptic equations with critical potential on cone-like domains , 2005, Advances in Differential Equations.

[35]  R. Penrose On Gravity's role in Quantum State Reduction , 1996 .

[36]  Lin Zhao,et al.  Classification of Positive Solitary Solutions of the Nonlinear Choquard Equation , 2010 .

[37]  M. Bidaut-Véron Local and global behavior of solutions of quasilinear equations of Emden-Fowler type , 1989 .

[38]  Juncheng Wei,et al.  Strongly interacting bumps for the Schrödinger–Newton equations , 2009 .