ParadisEO-MOEO: A Software Framework for Evolutionary Multi-Objective Optimization

This chapter presents ParadisEO-MOEO, a white-box object-oriented software framework dedicated to the flexible design of metaheuristics for multi-objective optimization. This paradigm-free software proposes a unified view for major evolutionary multi-objective metaheuristics. It embeds some features and techniques for multi-objective resolution and aims to provide a set of classes allowing to ease and speed up the development of computationally efficient programs. It is based on a clear conceptual distinction between the solution methods and the problems they are intended to solve. This separation confers a maximum design and code reuse. This general-purpose framework provides a broad range of fitness assignment strategies, the most common diversity preservation mechanisms, some elitistrelated features as well as statistical tools. Furthermore, a number of state-of-the-art search methods, including NSGA-II, SPEA2 and IBEA, have been implemented in a user-friendly way, based on the fine-grained ParadisEO-MOEO components.

[1]  Sanja Petrovic,et al.  An Introduction to Multiobjective Metaheuristics for Scheduling and Timetabling , 2004, Metaheuristics for Multiobjective Optimisation.

[2]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[3]  Daisuke Sasaki,et al.  Multiobjective Optimization Software , 2008, Multiobjective Optimization.

[4]  Michael P. Fourman,et al.  Compaction of Symbolic Layout Using Genetic Algorithms , 1985, ICGA.

[5]  Marco Laumanns,et al.  A Tutorial on Evolutionary Multiobjective Optimization , 2004, Metaheuristics for Multiobjective Optimisation.

[6]  Holger Ulmer,et al.  JavaEvA : a Java based framework for Evolutionary Algorithms , 2005 .

[7]  Francisco Luna,et al.  jMetal: a Java Framework for Developing Multi-Objective Optimization Metaheuristics , 2006 .

[8]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[9]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[10]  Max E. Valentinuzzi Handbook of bioinspired algorithms and applications , 2006, BioMedical Engineering OnLine.

[11]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[12]  El-Ghazali Talbi,et al.  Comparison of population based metaheuristics for feature selection: Application to microarray data classification , 2008, 2008 IEEE/ACS International Conference on Computer Systems and Applications.

[13]  El-Ghazali Talbi,et al.  A multiobjective genetic algorithm for radio network optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[14]  Arnaud Liefooghe,et al.  Metaheuristics and Their Hybridization to Solve the Bi-objective Ring Star Problem: a Comparative Study , 2008, 0804.3965.

[15]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[16]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[17]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[18]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[19]  L. Jain,et al.  Evolutionary multiobjective optimization : theoretical advances and applications , 2005 .

[20]  El-Ghazali Talbi,et al.  ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics , 2004, J. Heuristics.

[21]  Xin Yao,et al.  Parallel Problem Solving from Nature PPSN VI , 2000, Lecture Notes in Computer Science.

[22]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[23]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .

[24]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[25]  El-Ghazali Talbi,et al.  Parallel multi-objective algorithms for the molecular docking problem , 2008, 2008 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology.

[26]  Enrique Alba,et al.  The jMetal framework for multi-objective optimization: Design and architecture , 2010, IEEE Congress on Evolutionary Computation.

[27]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[28]  Kalyanmoy Deb,et al.  Evaluating the -Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions , 2005, Evolutionary Computation.

[29]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[30]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[31]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[32]  D. Dentcheva,et al.  On several concepts for ɛ-efficiency , 1994 .

[33]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[34]  Jean-Charles Billaut,et al.  Multicriteria scheduling , 2005, Eur. J. Oper. Res..

[35]  Xavier Gandibleux,et al.  Metaheuristics for Multiobjective Optimisation , 2004, Lecture Notes in Economics and Mathematical Systems.

[36]  Marc Parizeau,et al.  Genericity in Evolutionary Computation Software Tools: Principles and Case-study , 2006, Int. J. Artif. Intell. Tools.

[37]  Maarten Keijzer,et al.  Evolving Objects: A General Purpose Evolutionary Computation Library , 2001, Artificial Evolution.

[38]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[39]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[40]  El-Ghazali Talbi,et al.  Design of multi-objective evolutionary algorithms: application to the flow-shop scheduling problem , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[41]  Edmund K. Burke,et al.  Metaheuristics for the Bi-objective Ring Star Problem , 2008, EvoCOP.

[42]  El-Ghazali Talbi,et al.  ParadisEO-MOEO: A Framework for Evolutionary Multi-objective Optimization , 2007, EMO.

[43]  Carlos A. Coello Coello,et al.  g-dominance: Reference point based dominance for multiobjective metaheuristics , 2009, Eur. J. Oper. Res..

[44]  Stephanie Forrest,et al.  Proceedings of the 5th International Conference on Genetic Algorithms , 1993 .

[45]  El-Ghazali Talbi,et al.  Combinatorial Optimization of Stochastic Multi-objective Problems: An Application to the Flow-Shop Scheduling Problem , 2007, EMO.

[46]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[47]  El-Ghazali Talbi,et al.  A Hybrid Evolutionary Algorithm for Knowledge Discovery in Microarray Experiments , 2005, Handbook of Bioinspired Algorithms and Applications.

[48]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[49]  Tong Heng Lee,et al.  A multiobjective evolutionary algorithm toolbox for computer-aided multiobjective optimization , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[50]  Marco Laumanns,et al.  PISA: A Platform and Programming Language Independent Interface for Search Algorithms , 2003, EMO.

[51]  K. Dejong,et al.  An Analysis Of The Behavior Of A Class Of Genetic Adaptive Systems , 1975 .

[52]  El-Ghazali Talbi,et al.  New analysis of the optimization of electromagnetic shielding properties using conducting polymers and a multi‐objective approach , 2008 .

[53]  Martin J. Oates,et al.  The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation , 2000, PPSN.

[54]  El-Ghazali Talbi,et al.  Designing cellular networks using a parallel hybrid metaheuristic on the computational grid , 2007, Comput. Commun..

[55]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 , 2000 .

[56]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[57]  Kim Fung Man,et al.  Multiobjective Optimization , 2011, IEEE Microwave Magazine.