Combined equations of the Burgers hierarchy: multiple kink solutions and multiple singular kink solutions

Combined equations of the Burgers hierarchy are constructed using the sense of the combined Korteweg?de Vries (KdV)?modified KdV (mKdV) equation. The Cole?Hopf transformation method is used to study the resulting equations. Multiple kink solutions and multiple singular kink solutions are formally established for each combined equation. The kink solutions of any combination differ only in the dispersion relation.

[1]  Masaaki Ito,et al.  An Extension of Nonlinear Evolution Equations of the K-dV (mK-dV) Type to Higher Orders , 1980 .

[2]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[3]  Abdul-Majid Wazwaz,et al.  New solitons and kinks solutions to the Sharma-Tasso-Olver equation , 2007, Appl. Math. Comput..

[4]  Abdul-Majid Wazwaz,et al.  Multiple-front solutions for the Burgers equation and the coupled Burgers equations , 2007, Appl. Math. Comput..

[5]  Abdul-Majid Wazwaz,et al.  New solitons and kink solutions for the Gardner equation , 2007 .

[6]  Abdul-Majid Wazwaz,et al.  The Hirota's direct method for multiple-soliton solutions for three model equations of shallow water waves , 2008, Appl. Math. Comput..

[7]  Abdul-Majid Wazwaz,et al.  Multiple soliton solutions and multiple singular soliton solutions for the (3 + 1)-dimensional Burgers equations , 2008, Appl. Math. Comput..

[8]  Jarmo Hietarinta,et al.  A Search for Bilinear Equations Passing Hirota''s Three-Soliton Condition , 1987 .

[9]  Ryogo Hirota,et al.  A New Form of Bäcklund Transformations and Its Relation to the Inverse Scattering Problem , 1974 .

[10]  Alice Gorguis,et al.  A comparison between Cole-Hopf transformation and the decomposition method for solving Burgers' equations , 2006, Appl. Math. Comput..

[11]  Abdul-Majid Wazwaz Burgers hierarchy: Multiple kink solutions and multiple singular kink solutions , 2010, J. Frankl. Inst..

[12]  Abdul-Majid Wazwaz,et al.  Multiple kink solutions and multiple singular kink solutions for the (2 + 1)-dimensional Burgers equations , 2008, Appl. Math. Comput..

[13]  A. Wazwaz Partial Differential Equations and Solitary Waves Theory , 2009 .

[14]  Abdul-Majid Wazwaz,et al.  Multiple kink solutions and multiple singular kink solutions for two systems of coupled Burgers-type equations , 2009 .

[15]  Mehdi Dehghan,et al.  A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions , 2008, Math. Comput. Simul..

[16]  Anjan Biswas,et al.  Solitary wave solution for the generalized KdV equation with time-dependent damping and dispersion , 2009 .

[17]  Ryogo Hirota,et al.  Resonance of Solitons in One Dimension , 1983 .

[18]  A. Wazwaz The Hirota's direct method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-Ito seventh-order equation , 2008, Appl. Math. Comput..

[19]  Abdul-Majid Wazwaz,et al.  Multiple-soliton solutions for the KP equation by Hirota's bilinear method and by the tanh-coth method , 2007, Appl. Math. Comput..

[20]  Abdul-Majid Wazwaz,et al.  Multiple-front solutions for the Burgers-Kadomtsev-Petviashvili equation , 2008, Appl. Math. Comput..

[21]  Abdul-Majid Wazwaz,et al.  Multiple-soliton solutions of two extended model equations for shallow water waves , 2008, Appl. Math. Comput..

[22]  Abdul-Majid Wazwaz,et al.  Multiple-soliton solutions for the Boussinesq equation , 2007, Appl. Math. Comput..

[23]  Salah M. El-Sayed,et al.  A numerical solution and an exact explicit solution of the NLS equation , 2006, Appl. Math. Comput..

[24]  R. Hirota,et al.  N-Soliton Solutions of Model Equations for Shallow Water Waves , 1976 .

[25]  Abdul-Majid Wazwaz,et al.  Multiple-soliton solutions for the Lax-Kadomtsev-Petviashvili (Lax-KP) equation , 2008, Appl. Math. Comput..