Perfect narrow band absorber for sensing applications.

We design and numerically investigate a perfect narrow band absorber based on a metal-metal-dielectric-metal structure which consists of periodic metallic nanoribbon arrays. The absorber presents an ultra narrow absorption band of 1.11 nm with a nearly perfect absorption of over 99.9% in the infrared region. For oblique incidence, the absorber shows an absorption more than 95% for a wide range of incident angles from 0 to 50°. Structure parameters to the influence of the performance are investigated. The structure shows high sensing performance with a high sensitivity of 1170 nm/RIU and a large figure of merit of 1054. The proposed structure has great potential as a biosensor.

[1]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[2]  A. A. Jamali,et al.  Plasmonic Perfect Absorbers for Biosensing Applications , 2014, Plasmonics.

[3]  Gu Ben,et al.  Surface plasmon subwavelength optics:principles and novel effects , 2007 .

[4]  Xing Zhu,et al.  Tunable wide-angle plasmonic perfect absorber at visible frequencies , 2012 .

[5]  Willie J Padilla,et al.  Highly-flexible wide angle of incidence terahertz metamaterial absorber , 2008, 0808.2416.

[6]  Tie Jun Cui,et al.  Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation , 2012 .

[7]  Ole Albrektsen,et al.  Efficient absorption of visible radiation by gap plasmon resonators. , 2012, Optics express.

[8]  Yongqian Li,et al.  Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared , 2013, Scientific Reports.

[9]  G. Wurtz,et al.  Plasmonic nanorod metamaterials for biosensing. , 2009, Nature materials.

[10]  N. Kotov,et al.  SERS-active gold lace nanoshells with built-in hotspots. , 2010, Nano letters.

[11]  Xiaoyuan Lu,et al.  Nanoslit-microcavity-based narrow band absorber for sensing applications. , 2015, Optics express.

[12]  Paul S Weiss,et al.  Active molecular plasmonics: controlling plasmon resonances with molecular switches. , 2009, Nano letters.

[13]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[14]  Yi Zhang,et al.  Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells. , 2012, Nano letters.

[15]  Younan Xia,et al.  Localized surface plasmon resonance spectroscopy of single silver nanocubes. , 2005, Nano letters.

[16]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[17]  E. V. Chulkov,et al.  Theory of surface plasmons and surface-plasmon polaritons , 2007 .

[18]  Yan Wang,et al.  Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity , 2015, Nanotechnology.

[19]  D. R. Chowdhury,et al.  Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band. , 2011, Optics letters.

[20]  Willie J Padilla,et al.  Taming the blackbody with infrared metamaterials as selective thermal emitters. , 2011, Physical review letters.

[21]  Zhifeng Ren,et al.  Metallic nanostructures for light trapping in energy-harvesting devices , 2014, Light: Science & Applications.

[22]  Wei Shi,et al.  Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface. , 2014, Nano letters.

[23]  Hong Wei,et al.  Chiral surface plasmon polaritons on metallic nanowires. , 2011, Physical review letters.

[24]  Franz Faupel,et al.  Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials , 2011, Advanced materials.

[25]  Yanxia Cui,et al.  A thin film broadband absorber based on multi-sized nanoantennas , 2011 .

[26]  Haiqing Zhou,et al.  λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing , 2014 .

[27]  Peter Nordlander,et al.  Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. , 2009, ACS nano.

[28]  Guohui Xiao,et al.  Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit , 2013, Nature Communications.

[29]  Young-Jin Kim,et al.  Plasmonic generation of ultrashort extreme-ultraviolet light pulses , 2011 .

[30]  Alexandre G. Brolo,et al.  Plasmonics for future biosensors , 2012, Nature Photonics.

[31]  Helin Yang,et al.  Perfect Metamaterial Absorber with Dual Bands , 2010 .

[32]  A. Alú,et al.  Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces , 2012, 1211.4919.

[33]  R. J. Bell,et al.  Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. , 1983, Applied optics.

[34]  N. Fang,et al.  Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. , 2011, Nano letters.