A quantum interior-point predictor–corrector algorithm for linear programming

We introduce a new quantum optimization algorithm for dense Linear Programming problems, which can be seen as the quantization of the Interior Point Predictor-Corrector algorithm \cite{Predictor-Corrector} using a Quantum Linear System Algorithm \cite{DenseHHL}. The (worst case) work complexity of our method is, up to polylogarithmic factors, $O(L\sqrt{n}(n+m)\overline{||M||_F}\bar{\kappa}^2\epsilon^{-2})$ for $n$ the number of variables in the cost function, $m$ the number of constraints, $\epsilon^{-1}$ the target precision, $L$ the bit length of the input data, $\overline{||M||_F}$ an upper bound to the Frobenius norm of the linear systems of equations that appear, $||M||_F$, and $\bar{\kappa}$ an upper bound to the condition number $\kappa$ of those systems of equations. This represents a quantum speed-up in the number $n$ of variables in the cost function with respect to the comparable classical Interior Point algorithms when the initial matrix of the problem $A$ is dense: if we substitute the quantum part of the algorithm by classical algorithms such as Conjugate Gradient Descent, that would mean the whole algorithm has complexity $O(L\sqrt{n}(n+m)^2\bar{\kappa} \log(\epsilon^{-1}))$, or with exact methods, at least $O(L\sqrt{n}(n+m)^{2.373})$. Also, in contrast with any Quantum Linear System Algorithm, the algorithm described in this article outputs a classical description of the solution vector, and the value of the optimal solution.

[1]  Lov K. Grover,et al.  Creating superpositions that correspond to efficiently integrable probability distributions , 2002, quant-ph/0208112.

[2]  Stacey Jeffery,et al.  The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation , 2018, ICALP.

[3]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[4]  Ashley Montanaro,et al.  Quantum algorithms and the finite element method , 2015, 1512.05903.

[5]  András Gilyén,et al.  Improvements in Quantum SDP-Solving with Applications , 2018, ICALP.

[6]  Andris Ambainis,et al.  Variable time amplitude amplification and quantum algorithms for linear algebra problems , 2012, STACS.

[7]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[8]  B. D. Clader,et al.  Preconditioned quantum linear system algorithm. , 2013, Physical review letters.

[9]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[10]  Luis Antonio Brasil Kowada,et al.  A NEW QUANTUM ALGORITHM FOR SOLVING THE MINIMUM SEARCHING PROBLEM , 2008 .

[11]  Stephen J. Wright,et al.  Primal-Dual Interior-Point Methods , 1997 .

[12]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[13]  M. Padberg Linear Optimization and Extensions , 1995 .

[14]  Iordanis Kerenidis,et al.  A Quantum Interior Point Method for LPs and SDPs , 2018, ACM Transactions on Quantum Computing.

[15]  Yuval Rabani,et al.  Linear Programming , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[16]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[17]  D. Berry,et al.  Black-Box Quantum State Preparation without Arithmetic. , 2018, Physical review letters.

[18]  T. Monz,et al.  Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator , 2018, Physical Review X.

[19]  R. Blatt,et al.  Quantum computations on a topologically encoded qubit , 2014, Science.

[20]  Monique Laurent,et al.  Semidefinite optimization , 2019, Graphs and Geometry.

[21]  E. D. Klerk,et al.  Aspects of semidefinite programming : interior point algorithms and selected applications , 2002 .

[22]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[23]  Ameet Talwalkar,et al.  Foundations of Machine Learning , 2012, Adaptive computation and machine learning.

[24]  Krysta Marie Svore,et al.  Quantum Speed-Ups for Solving Semidefinite Programs , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[25]  Yinyu Ye,et al.  On the finite convergence of interior-point algorithms for linear programming , 1992, Math. Program..

[26]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[27]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[28]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[29]  L. Lamata,et al.  From transistor to trapped-ion computers for quantum chemistry , 2013, Scientific Reports.

[30]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[31]  A. Prakash,et al.  Quantum gradient descent for linear systems and least squares , 2017, Physical Review A.

[32]  Iordanis Kerenidis,et al.  Quantum Recommendation Systems , 2016, ITCS.

[33]  John Preskill,et al.  Quantum computing and the entanglement frontier , 2012, 1203.5813.

[34]  Shinji Mizuno,et al.  An O(√nL)-Iteration Homogeneous and Self-Dual Linear Programming Algorithm , 1994, Math. Oper. Res..

[35]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[36]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[37]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[38]  L. Wossnig,et al.  Quantum Linear System Algorithm for Dense Matrices. , 2017, Physical review letters.

[39]  A. Galindo,et al.  Information and computation: Classical and quantum aspects , 2001, quant-ph/0112105.

[40]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[41]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[42]  Ewin Tang,et al.  A quantum-inspired classical algorithm for recommendation systems , 2018, Electron. Colloquium Comput. Complex..

[43]  Alán Aspuru-Guzik,et al.  Quantum Chemistry in the Age of Quantum Computing. , 2018, Chemical reviews.

[44]  I. Chuang,et al.  Hamiltonian Simulation by Qubitization , 2016, Quantum.

[45]  Xiaodi Wu,et al.  Exponential Quantum Speed-ups for Semidefinite Programming with Applications to Quantum Learning , 2017, ArXiv.

[46]  Giacomo Nannicini Fast quantum subroutines for the simplex method , 2019, ArXiv.

[47]  W. Marsden I and J , 2012 .

[48]  Shouvanik Chakrabarti,et al.  Quantum algorithms and lower bounds for convex optimization , 2018, Quantum.

[49]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[50]  Franz Rendl,et al.  Semidefinite programming and integer programming , 2002 .

[51]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.