HEAD-NECK BIOMECHANICS IN SIMULATED REAR IMPACT

The first objective of this study is to present an overview of the human cadaver studies aimed to determine the biomechanics of the head-neck in a simulated rear crash. The need for kinematic studies to better understand the mechanisms of load transfer to the human head-neck complex is emphasized. Based on this need, a methodology is developed to delineate the dynamic kinematics of the human head-neck complex. Intact human cadaver head-neck complexes were subjected to postero-anterior impact using a mini-sled pendulum device. The integrity of the soft tissues including the musculature and skin were maintained. The kinematic data were recorded using high-speed photography coupled with retroreflective targets placed at various regions of the human head-neck complex. The overall and segmental kinematics of the entire head-neck complex, and the localized facet joint motions were determined. During the initial stages of loading, a transient decoupling of the head occurred with respect to the neck exhibiting a lag of the cranium. The upper cervical spine-head undergoes local flexion concomitant with a lag of the head while the lower cervical spinal column is in local extension. This establishes a reverse curvature to the cervical head-neck complex. With continued loading, head motion ensues and approximately at the end of the loading phase, the entire head-neck complex is under the extension mode with a single curvature. In contrast, the lower cervical spine facet joint kinematics show varying compression and sliding. While both the anterior and posterior-most regions of the facet joint slide, the posterior-most region (mean: 2.84 mm) of the joint compresses more than the anterior-most (mean: 2.02 mm) region. These varying kinematics at the ends of the facet joint result in a pinching mechanism. These biomechanical kinematic findings may be correlated to the presence of headaches and neck pain (Lord, Bogduk et al. 1992; Barnsley, Lord et al. 1995), based on the unique human head-neck anatomy at the upper cervical spine region and the associated facet joint characteristics, and clinical studies.