The use of the CADNA library for validating the numerical results of the hybrid GMRES algorithm

Abstract Over the past several years a number of hybrid algorithms have been proposed for solving large sparse systems of linear algebraic equations. In this paper we consider the hybrid GMRES algorithm by Nachtigal, Reichel and Trefethen (1992) and show that in the floating-point arithmetic there exist some cases in which the properties of this algorithm are lost, e.g., the result is false, or the coefficients of the GMRES residual polynomial are non-significant and lead to serious round-off errors. The subject of this paper is to show how by using the CADNA library, it is possible during the run of the hybrid GMRES code to detect the numerical instabilities, to stop correctly the process, and to evaluate the accuracy of the results provided by the computer. Numerical examples are used to show the good numerical properties.

[1]  Lloyd N. Trefethen,et al.  A Hybrid GMRES Algorithm for Nonsymmetric Linear Systems , 1992, SIAM J. Matrix Anal. Appl..

[2]  Y. Saad Least squares polynomials in the complex plane and their use for solving nonsymmetric linear systems , 1987 .

[3]  R. P. Boas Capitalizaton of language references , 1966, CACM.

[4]  Christian Ullrich Contributions to computer arithmetic and self-validating numerical methods , 1990 .

[5]  G. Stewart Introduction to matrix computations , 1973 .

[6]  Y. Saad,et al.  A hybrid Chebyshev Krylov subspace algorithm for solving nonsymmetric systems of linear equations , 1986 .

[7]  J. Richard Swenson,et al.  Tests of probabilistic models for propagation of roundoff errors , 1966, CACM.

[8]  Jean Vignes,et al.  A stochastic arithmetic for reliable scientific computation , 1993 .

[9]  Lloyd N. Trefethen,et al.  How Fast are Nonsymmetric Matrix Iterations? , 1992, SIAM J. Matrix Anal. Appl..

[10]  P. Saylor,et al.  An optimum iterative method for solving any linear system with a square matrix , 1988 .

[11]  R. W. Hamming,et al.  On the distribution of numbers , 1970, Bell Syst. Tech. J..

[12]  H. Elman,et al.  Polynomial iteration for nonsymmetric indefinite linear systems , 1986 .

[13]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[14]  M. Porte,et al.  Etude statistique des erreurs dans l'arithmetique des ordinateurs; application au controle des resultats d'algorithmes numeriques , 1974 .

[15]  J. Vignes New methods for evaluating the validity of the results of mathematical computations , 1978 .

[16]  J. Vignes,et al.  Zéro mathématique et zéro informatique , 1986 .

[17]  Martin H. Gutknecht,et al.  Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..

[18]  Richard Goodman,et al.  Convergence Estimates for the Distribution of Trailing Digits , 1976, JACM.

[19]  J.-M. Chesneaux,et al.  Les fondements de l'arithmétique stochastique , 1992 .

[20]  Lothar Reichel,et al.  The application of Leja points to Richardson iteration and polynomial preconditioning , 1991 .