A multi-frequency inverse source problem

This paper is concerned with an inverse source problem that determines the source from measurements of the radiated fields away at multiple frequencies. Rigorous stability estimates are established when the background medium is homogeneous. It is shown that the ill-posedness of the inverse problem decreases as the frequency increases. Under some regularity assumptions on the source function, it is further proven that by increasing the frequency, the logarithmic stability converts to a linear one for the inverse source problem.

[1]  Yoel Shkolnisky,et al.  Approximation of bandlimited functions , 2006 .

[2]  Gang Bao,et al.  Inverse Medium Scattering Problems for Electromagnetic Waves , 2005, SIAM J. Appl. Math..

[3]  A. Devaney,et al.  Nonuniqueness in inverse source and scattering problems , 1982 .

[4]  Peter Monk,et al.  The inverse source problem for Maxwell's equations , 2006 .

[5]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[6]  Karl-Heinz Hauer,et al.  On uniqueness and non-uniqueness for current reconstruction from magnetic fields , 2005 .

[7]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[8]  Nicolas Valdivia,et al.  Acoustic source identification using multiple frequency information , 2009 .

[9]  Yu Chen,et al.  Inverse scattering via Heisenberg's uncertainty principle , 1996 .

[10]  D Courjon,et al.  Detection of nonradiative fields in light of the Heisenberg uncertainty principle and the Rayleigh criterion. , 1992, Applied optics.

[11]  P. Zweifel Advanced Mathematical Methods for Scientists and Engineers , 1980 .

[12]  Gang Bao,et al.  Numerical solution of inverse scattering for near-field optics. , 2007, Optics letters.

[13]  Gang Bao,et al.  ERROR ESTIMATES FOR THE RECURSIVE LINEARIZATION OF INVERSE MEDIUM PROBLEMS , 2010 .

[14]  D. Slepian Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.

[15]  Jack K. Cohen,et al.  Nonuniqueness in the inverse source problem in acoustics and electromagnetics , 1975 .

[16]  Gang Bao,et al.  An Inverse Source Problem for Maxwell's Equations in Magnetoencephalography , 2002, SIAM J. Appl. Math..

[17]  A. Kirsch,et al.  Antenna control and optimization , 1991 .

[18]  Victor Isakov,et al.  Increased stability in the continuation of solutions to the Helmholtz equation , 2004 .

[19]  George Dassios,et al.  On the non-uniqueness of the inverse MEG problem , 2005 .

[20]  Roland Potthast,et al.  Reconstruction of a current distribution from its magnetic field , 2002 .

[21]  Anthony J. Devaney,et al.  Inverse Source Problem in Nonhomogeneous Background Media , 2007, SIAM J. Appl. Math..

[22]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[23]  D. Slepian Prolate spheroidal wave functions, Fourier analysis and uncertainty — IV: Extensions to many dimensions; generalized prolate spheroidal functions , 1964 .

[24]  Gang Bao,et al.  Numerical Solution of Inverse Scattering Problems with Multi-experimental Limited Aperture Data , 2003, SIAM J. Sci. Comput..

[25]  A. J. Devaney,et al.  Radiating and nonradiating classical current distributions and the fields they generate , 1973 .

[26]  Gang Bao,et al.  Inverse scattering by a continuation method with initial guesses from a direct imaging algorithm , 2007, J. Comput. Phys..

[27]  George Dassios,et al.  Magnetoencephalography in ellipsoidal geometry , 2003 .

[28]  Alexander G. Ramm,et al.  Multidimensional inverse scattering problems , 1999, DIPED - 99. Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory. Proceedings of 4th International Seminar/Workshop (IEEE Cat. No.99TH8402).

[29]  Gang Bao,et al.  INVERSE MEDIUM SCATTERING PROBLEMS IN NEAR-FIELD OPTICS *1) , 2007 .

[30]  Sailing He,et al.  Identification of dipole sources in a bounded domain for Maxwell's equations , 1998 .

[31]  G. Bao,et al.  Inverse medium scattering for the Helmholtz equation at fixed frequency , 2005 .