Bayesian distances and extinctions for giants observed by Kepler and APOGEE

We present a first determination of distances and extinctions for individual stars in the first release of the APOKASC catalogue, built from the joint efforts of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and the Kepler Asteroseismic Science Consortium (KASC). Our method takes into account the spectroscopic constraints derived from the APOGEE Stellar Parameters and Chemical Abundances Pipeline, together with the asteroseismic parameters from KASC. These parameters are then employed to estimate intrinsic stellar properties, including absolute magnitudes, using the Bayesian tool PARAM. We then find the distance and extinction that best fit the observed photometry in SDSS, 2MASS, and WISE passbands. The first 1989 giants targeted by APOKASC are found at typical distances between 0.5 and 5 kpc, with individual uncertainties of just ~1.8 per cent. Our extinction estimates are systematically smaller than provided in the Kepler Input Catalogue and by the Schlegel, Finkbeiner and Davis maps. Distances to individual stars in the NGC 6791 and NGC 6819 star clusters agree to within their credible intervals. Comparison with the APOGEE red clump and SAGA catalogues provide another useful check, exhibiting agreement with our measurements to within a few percent. Overall, present methods seem to provide excellent distance and extinction determinations for the bulk of the APOKASC sample. Approximately one third of the stars present broad or multiple-peaked probability density functions and hence increased uncertainties. Uncertainties are expected to be reduced in future releases of the catalogue, when a larger fraction of the stars will have seismically-determined evolutionary status classifications.

[1]  C. Prieto,et al.  CALIBRATIONS OF ATMOSPHERIC PARAMETERS OBTAINED FROM THE FIRST YEAR OF SDSS-III APOGEE OBSERVATIONS , 2013, 1308.6617.

[2]  M. Pinsonneault,et al.  Asteroseismology of old open clusters with Kepler: direct estimate of the integrated red giant branch mass-loss in NGC 6791 and 6819 , 2011, 1109.4376.

[3]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[4]  Ž. Ivezić,et al.  The SDSS–2MASS–WISE 10-dimensional stellar colour locus , 2014, 1403.1875.

[5]  Timothy M. Brown,et al.  KEPLER INPUT CATALOG: PHOTOMETRIC CALIBRATION AND STELLAR CLASSIFICATION , 2011, 1102.0342.

[6]  R. Gilliland,et al.  The Kepler Asteroseismic Investigation: Scientific goals and the first results , 2010, 1007.1816.

[7]  P. Bonifacio,et al.  A new implementation of the infrared flux method using the 2MASS catalogue , 2009, 0901.3034.

[8]  C. D. Laney,et al.  A new LMC K-band distance from precision measurements of nearby red clump stars , 2011, 1109.4800.

[9]  William J. Chaplin,et al.  AN IN-DEPTH STUDY OF GRID-BASED ASTEROSEISMIC ANALYSIS , 2010, 1009.3018.

[10]  S. Majewski,et al.  LIFTING THE DUSTY VEIL WITH NEAR- AND MID-INFRARED PHOTOMETRY. II. A LARGE-SCALE STUDY OF THE GALACTIC INFRARED EXTINCTION LAW , 2009 .

[11]  P. Tenenbaum,et al.  VERIFYING ASTEROSEISMICALLY DETERMINED PARAMETERS OF KEPLER STARS USING HIPPARCOS PARALLAXES: SELF-CONSISTENT STELLAR PROPERTIES AND DISTANCES , 2012, 1208.6294.

[12]  ASTEROSEISMOLOGY OF THE OPEN CLUSTERS NGC 6791, NGC 6811, AND NGC 6819 FROM 19 MONTHS OF KEPLER PHOTOMETRY , 2012, 1205.4023.

[13]  J. De Ridder,et al.  TESTING SCALING RELATIONS FOR SOLAR-LIKE OSCILLATIONS FROM THE MAIN SEQUENCE TO RED GIANTS USING KEPLER DATA , 2011, 1109.3460.

[14]  Timothy M. Brown,et al.  Detection of possible p-mode oscillations on Procyon , 1991 .

[15]  J. De Ridder,et al.  FUNDAMENTAL PROPERTIES OF STARS USING ASTEROSEISMOLOGY FROM KEPLER AND CoRoT AND INTERFEROMETRY FROM THE CHARA ARRAY , 2012, 1210.0012.

[16]  Revised bolometric corrections and interstellar extinction coefficients for the ACS and WFPC2 photometric systems , 2008, 0804.0498.

[17]  E. Starkenburg,et al.  GALACTIC ARCHAEOLOGY: NEAR-FIELD COSMOLOGY AND THE FORMATION OF THE MILKY WAY , 2012 .

[18]  Peter B. Stetson,et al.  Homogeneous Photometry. III. A Star Catalog for the Open Cluster NGC 6791 , 2003 .

[19]  S. Hekker,et al.  ASTEROSEISMIC STUDY ON CLUSTER DISTANCE MODULI FOR RED GIANT BRANCH STARS IN NGC 6791 AND NGC 6819 , 2014, 1403.5838.

[20]  Olivier Bienayme,et al.  New distances to RAVE stars , 2013, 1309.4270.

[21]  T. Appourchaux,et al.  RADIUS DETERMINATION OF SOLAR-TYPE STARS USING ASTEROSEISMOLOGY: WHAT TO EXPECT FROM THE KEPLER MISSION , 2009, 0906.0766.

[22]  D. A. García-Hernández,et al.  THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2013, 1307.7735.

[23]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[24]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[25]  K. T. Hole,et al.  WIYN OPEN CLUSTER STUDY. XXIV. STELLAR RADIAL-VELOCITY MEASUREMENTS IN NGC 6819 , 2009, 0902.4040.

[26]  J. E. O'Donnell R(sub nu)-dependent optical and near-ultraviolet extinction , 1994 .

[27]  C. Allende Prieto,et al.  TARGET SELECTION FOR THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT (APOGEE) , 2013 .

[28]  Belgium,et al.  Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP- , 2007, 0711.4922.

[29]  G. Chabrier The Galactic Disk Mass Budget. I. Stellar Mass Function and Density , 2001 .

[30]  D. Valls-Gabaud,et al.  Deriving star formation histories: inverting Hertzsprung‐‐Russell diagrams through a variational calculus maximum likelihood method , 1998, astro-ph/9809039.

[31]  F. Grundahl,et al.  STRÖMGREN SURVEY FOR ASTEROSEISMOLOGY AND GALACTIC ARCHAEOLOGY: LET THE SAGA BEGIN , 2014, 1403.2754.

[32]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[33]  L. Girardi,et al.  Theoretical isochrones in several photometric systems I. Johnson-Cousins-Glass, HST/WFPC2, HST/NICMOS, Washington, and ESO Imaging Survey filter sets , 2002, astro-ph/0205080.

[34]  L. Fossati,et al.  Galactic archaeology: mapping and dating stellar populations with asteroseismology of red-giant stars , 2012, 1211.0146.

[35]  Thomas Kallinger,et al.  SOUNDING OPEN CLUSTERS: ASTEROSEISMIC CONSTRAINTS FROM KEPLER ON THE PROPERTIES OF NGC 6791 AND NGC 6819 , 2011, 1102.2231.

[36]  R. Ibata,et al.  ARGOS – II. The Galactic bulge survey , 2012, 1212.1541.

[37]  Sergio Ortolani,et al.  The Gaia-ESO Public Spectroscopic Survey , 2012 .

[38]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[39]  D. Buzasi,et al.  ASTEROSEISMOLOGY OF RED GIANTS FROM THE FIRST FOUR MONTHS OF KEPLER DATA: GLOBAL OSCILLATION PARAMETERS FOR 800 STARS , 2010, 1010.4566.

[40]  C. Aerts,et al.  Kepler Detected Gravity-Mode Period Spacings in a Red Giant Star , 2011, Science.

[41]  T. Beers,et al.  CHEMICAL CARTOGRAPHY WITH APOGEE: LARGE-SCALE MEAN METALLICITY MAPS OF THE MILKY WAY DISK , 2013, 1311.4569.

[42]  S. D. Kawaler,et al.  Ensemble Asteroseismology of Solar-Type Stars with the NASA Kepler Mission , 2011, Science.

[43]  Alyssa A. Goodman,et al.  Measuring Galactic Extinction: A Test , 1999, astro-ph/9902109.

[44]  William J. Chaplin,et al.  DETERMINATION OF STELLAR RADII FROM ASTEROSEISMIC DATA , 2009, 0909.0506.

[45]  Steven R. Majewski,et al.  LIFTING THE DUSTY VEIL WITH NEAR- AND MID-INFRARED PHOTOMETRY. I. DESCRIPTION AND APPLICATIONS OF THE RAYLEIGH–JEANS COLOR EXCESS METHOD , 2011, 1106.2542.

[46]  F. Grundahl,et al.  AN ASTEROSEISMIC MEMBERSHIP STUDY OF THE RED GIANTS IN THREE OPEN CLUSTERS OBSERVED BY KEPLER: NGC 6791, NGC 6819, AND NGC 6811 , 2011, 1107.1234.

[47]  T. Beers,et al.  TESTING THE ASTEROSEISMIC MASS SCALE USING METAL-POOR STARS CHARACTERIZED WITH APOGEE AND KEPLER , 2014, 1403.1872.

[48]  James Binney,et al.  Stellar distances from spectroscopic observations: a new technique , 2010, 1004.4367.

[49]  B. Mosser,et al.  The underlying physical meaning of the νmax νc relation , 2011, 1104.0630.

[50]  Jaymie M. Matthews,et al.  REVISED STELLAR PROPERTIES OF KEPLER TARGETS FOR THE QUARTER 1–16 TRANSIT DETECTION RUN , 2013, 1312.0662.

[51]  J. Ma'iz-Apell'aniz The Spatial Distribution of O-B5 Stars in the Solar Neighborhood as Measured by Hipparcos , 2001, astro-ph/0101310.

[52]  E. K. Grebel,et al.  Theoretical isochrones in several photometric systems. II. The Sloan Digital Sky Survey ugriz system , 2004 .

[53]  L. Girardi,et al.  Theoretical isochrones compared to 2MASS observations: Open clusters at nearly solar metallicity , 2004 .

[54]  A. Serenelli,et al.  Bayesian analysis of ages, masses and distances to cool stars with non-LTE spectroscopic parameters , 2012, 1212.4497.

[55]  F. Grundahl,et al.  Age and helium content of the open cluster NGC 6791 from multiple eclipsing binary members , 2010, Astronomy & Astrophysics.

[56]  Travis S. Metcalfe,et al.  A REVISED EFFECTIVE TEMPERATURE SCALE FOR THE KEPLER INPUT CATALOG , 2011, 1110.4456.

[57]  J. De Ridder,et al.  Mixed modes in red-giant stars observed with CoRoT , 2011, 1105.6113.

[58]  D. Stello,et al.  ASTEROSEISMIC CLASSIFICATION OF STELLAR POPULATIONS AMONG 13,000 RED GIANTS OBSERVED BY KEPLER , 2013, 1302.0858.

[59]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[60]  Conny Aerts,et al.  Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars , 2011, Nature.

[61]  F. Grundahl,et al.  Age and helium content of the open cluster NGC 6791 from multiple eclipsing binary members. I. Measurements, methods, and first results , 2010, 1009.5537.

[62]  David Schlegel,et al.  The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution , 2005, astro-ph/0510520.

[63]  Walter A. Siegmund,et al.  The 2.5 m Telescope of the Sloan Digital Sky Survey , 2006, astro-ph/0602326.

[64]  Lennart Lindegren,et al.  Determination of stellar ages from isochrones: Bayesian estimation versus isochrone fitting , 2005 .

[65]  H. Winckel,et al.  DISCOVERY OF A RED GIANT WITH SOLAR-LIKE OSCILLATIONS IN AN ECLIPSING BINARY SYSTEM FROM KEPLER SPACE-BASED PHOTOMETRY , 2010, 1001.0399.

[66]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[67]  S. Cassisi,et al.  A Large Stellar Evolution Database for Population Synthesis Studies. I. Scaled Solar Models and Isochrones , 2004, astro-ph/0405193.

[68]  L. Pasquini,et al.  Basic physical parameters of a selected sample of evolved stars , 2006 .

[69]  B. Yanny,et al.  A Spectroscopic Study of the Ancient Milky Way: F- and G-Type Stars in the Third Data Release of the Sloan Digital Sky Survey , 2005, astro-ph/0509812.

[70]  F. Grundahl,et al.  WOCS 40007: A DETACHED ECLIPSING BINARY NEAR THE TURNOFF OF THE OPEN CLUSTER NGC 6819 , 2013, 1307.0442.