ALMA deep field in SSA22: Blindly detected CO emitters and [C II] emitter candidates

We report the identification of four millimeter line-emitting galaxies with the Atacama Large Milli/submillimeter Array (ALMA) in SSA22 Field (ADF22). We analyze the ALMA 1.1-mm survey data, with an effective survey area of 5 arcmin2, frequency ranges of 253.1–256.8 and 269.1–272.8 GHz, angular resolution of 0 ′′. .′′ 7 and rms noise of 0.8 mJy beam−1 at 36 km s−1 velocity resolution. We detect four line-emitter candidates with significance levels above 6σ. We identify one of the four sources as a CO(9–8) emitter at z = 3.1 in a member of the proto-cluster known in this field. Another line emitter with an optical counterpart is likely a CO(4–3) emitter at z = 0.7. The other two sources without any millimeter continuum or optical/near-infrared counterpart are likely to be [C II] emitter candidates at z = 6.0 and 6.5. The equivalent widths of the [C II] candidates are consistent with those of confirmed high-redshift [C II] emitters and candidates, and are a factor of 10 times larger than that of the CO(9–8) emitter detected in this search. The [C II] luminosity of the candidates are 4–7 × 108 L⊙. The star formation rates (SFRs) of these sources are estimated to be 10–20 M⊙ yr−1 if we adopt an empirical [C II] luminosity–SFR relation. One of them has a relatively low S/N ratio, but shows features characteristic of emission lines. Assuming that at least one of the two candidates is a [C II] emitter, we derive a lower limit of [C II]-based star formation rate density (SFRD) at z ∼ 6. The resulting value of >10−2 M⊙ yr−1 Mpc−3 is consistent with the dust-uncorrected UV-based SFRD. Future millimeter/submillimeter surveys can be used to detect a number of high-redshift line emitters, with which to study the star formation history in the early universe.

[1]  I. Smail,et al.  ALMA Deep Field in SSA22: Source Catalog and Number Counts , 2016, 1611.09857.

[2]  Shoubaneh Hemmati,et al.  THE LOCAL [C ii] 158 μm EMISSION LINE LUMINOSITY FUNCTION , 2016, 1611.03092.

[3]  C. Conselice,et al.  FAINT SUBMILLIMETER GALAXIES IDENTIFIED THROUGH THEIR OPTICAL/NEAR-INFRARED COLORS. I. SPATIAL CLUSTERING AND HALO MASSES , 2016, 1609.00388.

[4]  A. Fontana,et al.  TRACING THE REIONIZATION EPOCH WITH ALMA: [C ii] EMISSION IN z ∼ 7 GALAXIES , 2016, 1608.08837.

[5]  P. P. van der Werf,et al.  ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: CO LUMINOSITY FUNCTIONS AND THE EVOLUTION OF THE COSMIC DENSITY OF MOLECULAR GAS , 2016, 1607.06770.

[6]  H. Rix,et al.  THE ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: MOLECULAR GAS RESERVOIRS IN HIGH-REDSHIFT GALAXIES , 2016, 1607.06771.

[7]  P. P. van der Werf,et al.  THE ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: CONTINUUM NUMBER COUNTS, RESOLVED 1.2 mm EXTRAGALACTIC BACKGROUND, AND PROPERTIES OF THE FAINTEST DUSTY STAR-FORMING GALAXIES , 2016, 1607.06769.

[8]  P. P. van der Werf,et al.  THE ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: SEARCH FOR [ ] LINE AND DUST EMISSION IN 6 < z < 8 GALAXIES , 2016, 1607.06772.

[9]  P. P. van der Werf,et al.  ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: THE INFRARED EXCESS OF UV-SELECTED z = 2–10 GALAXIES AS A FUNCTION OF UV-CONTINUUM SLOPE AND STELLAR MASS , 2016, 1606.05280.

[10]  N. Yoshida,et al.  Detection of an oxygen emission line from a high-redshift galaxy in the reionization epoch , 2016, Science.

[11]  V. A. Bruce,et al.  A deep ALMA image of the Hubble Ultra Deep Field , 2016, 1606.00227.

[12]  E. Pellegrini,et al.  The ionized gas in nearby galaxies as traced by the [N ii] 122 and 205 μm transitions , 2016, 1605.03180.

[13]  J. Dunlop,et al.  SXDF-ALMA 2-arcmin2 deep survey: 1.1-mm number counts , 2016, 1602.08167.

[14]  G. Helou,et al.  Spatially resolved dust emission of extremely metal-poor galaxies , 2016, 1602.05362.

[15]  R. Somerville,et al.  Sub-mm emission line deep fields: CO and [C II] luminosity functions out to z = 6 , 2016, 1602.02761.

[16]  G. Zamorani,et al.  CO luminosity function from Herschel-selected galaxies and the contribution of AGN , 2015, 1511.00974.

[17]  R. Assef,et al.  THE STRIKINGLY UNIFORM, HIGHLY TURBULENT INTERSTELLAR MEDIUM OF THE MOST LUMINOUS GALAXY IN THE UNIVERSE , 2015, 1511.04079.

[18]  O. Ilbert,et al.  Galaxies at redshifts 5 to 6 with systematically low dust content and high [C ii] emission , 2015, Nature.

[19]  Yoshiaki Ono,et al.  ALMA CENSUS OF FAINT 1.2 mm SOURCES DOWN TO ∼ 0.02 mJy: EXTRAGALACTIC BACKGROUND LIGHT AND DUST-POOR, HIGH-z GALAXIES , 2015, 1505.03523.

[20]  T. Nagao,et al.  The ALMA Patchy Deep Survey: a blind search for [C ii] emitters at z ∼ 4.5 , 2015, 1505.02244.

[21]  Ran Wang,et al.  STAR FORMATION AND THE INTERSTELLAR MEDIUM IN z>6 UV-LUMINOUS LYMAN-BREAK GALAXIES , 2015, 1504.05875.

[22]  O. Ilbert,et al.  The Interstellar Medium In Galaxies Seen A Billion Years After The Big Bang , 2015, 1503.07596.

[23]  A. Fontana,et al.  The assembly of ‘normal’ galaxies at z ∼ 7 probed by ALMA , 2015, 1502.06634.

[24]  A. Fontana,et al.  ALMA constraints on the faint millimetre source number counts and their contribution to the cosmic infrared background , 2015, 1502.00640.

[25]  Ichi Tanaka,et al.  NIR SPECTROSCOPIC OBSERVATION OF MASSIVE GALAXIES IN THE PROTOCLUSTER AT z = 3.09 , 2014, 1411.2663.

[26]  B. Groves,et al.  THE SURVEY OF LINES IN M31 (SLIM): INVESTIGATING THE ORIGINS OF [C ii] EMISSION , 2014, 1410.6158.

[27]  M. Ouchi,et al.  FAINT SUBMILLIMETER GALAXIES REVEALED BY MULTIFIELD DEEP ALMA OBSERVATIONS: NUMBER COUNTS, SPATIAL CLUSTERING, AND A DARK SUBMILLIMETER LINE EMITTER , 2014, 1403.4360.

[28]  B. Groves,et al.  The nebular emission of star-forming galaxies in a hierarchical universe , 2014, 1402.5145.

[29]  E. Pellegrini,et al.  The applicability of far-infrared fine-structure lines as star formation rate tracers over wide ranges of metallicities and galaxy types , 2014, 1402.4075.

[30]  D. Narayanan,et al.  Dusty Star Forming Galaxies at High Redshift , 2014, 1402.1456.

[31]  T. Takeuchi,et al.  Evolution of extinction curves in galaxies , 2014, 1401.7121.

[32]  D. Iono,et al.  SERENDIPITOUS ALMA DETECTION OF A DISTANT CO-EMITTING X-RAY BRIGHT GALAXY , 2014 .

[33]  M. L. N. Ashby,et al.  THE MOST LUMINOUS z ∼ 9–10 GALAXY CANDIDATES YET FOUND: THE LUMINOSITY FUNCTION, COSMIC STAR-FORMATION RATE, AND THE FIRST MASS DENSITY ESTIMATE AT 500 Myr , 2013, 1309.2280.

[34]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[35]  N. Yoshida,et al.  ALMA WILL DETERMINE THE SPECTROSCOPIC REDSHIFT z > 8 WITH FIR [O iii] EMISSION LINES , 2013, 1312.0684.

[36]  P. P. van der Werf,et al.  AN ALMA SURVEY OF SUBMILLIMETER GALAXIES IN THE EXTENDED CHANDRA DEEP FIELD SOUTH: THE REDSHIFT DISTRIBUTION AND EVOLUTION OF SUBMILLIMETER GALAXIES , 2013, 1310.6363.

[37]  Edinburgh,et al.  An ALMA survey of sub-millimetre Galaxies in the Extended Chandra Deep Field South: the far-infrared properties of SMGs , 2013, 1310.6362.

[38]  T. Ichikawa,et al.  THE FORMATION OF THE MASSIVE GALAXIES IN THE SSA22 z = 3.1 PROTOCLUSTER , 2013, 1310.2020.

[39]  J. Bernard-Salas,et al.  FAR-INFRARED FINE-STRUCTURE LINE DIAGNOSTICS OF ULTRALUMINOUS INFRARED GALAXIES , 2013, 1308.4165.

[40]  Arizona State University,et al.  EXPLAINING THE [C ii]157.7 μm DEFICIT IN LUMINOUS INFRARED GALAXIES—FIRST RESULTS FROM A HERSCHEL/PACS STUDY OF THE GOALS SAMPLE , 2013, 1307.2635.

[41]  B. Magnelli,et al.  Herschel PEP/HerMES: the redshift evolution (0 ≤ z ≤ 4) of dust attenuation and of the total (UV+IR) star formation rate density , 2013, 1304.7000.

[42]  A. Cimatti,et al.  The Herschel* PEP/HerMES luminosity function - I. Probing the evolution of PACS selected Galaxies to z ≃ 4 , 2013, 1302.5209.

[43]  A. Omont,et al.  REDSHIFT 6.4 HOST GALAXIES OF 108 SOLAR MASS BLACK HOLES: LOW STAR FORMATION RATE AND DYNAMICAL MASS , 2013, 1302.1587.

[44]  S. Maddox,et al.  H2O emission in high-z ultra-luminous infrared galaxies , 2013, 1301.6618.

[45]  H. Rix,et al.  EMPIRICAL PREDICTIONS FOR (SUB-)MILLIMETER LINE AND CONTINUUM DEEP FIELDS , 2013, The Astrophysical Journal.

[46]  F. Walter,et al.  Cool Gas in High-Redshift Galaxies , 2013, 1301.0371.

[47]  R. Wechsler,et al.  THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0–8 , 2012, 1207.6105.

[48]  Jonathan P. Williams,et al.  PRECISE IDENTIFICATIONS OF SUBMILLIMETER GALAXIES: MEASURING THE HISTORY OF MASSIVE STAR-FORMING GALAXIES TO z > 5,, , 2012, 1209.1626.

[49]  Edinburgh,et al.  An ALMA survey of submillimetre galaxies in the Extended Chandra Deep Field‐South: detection of [C ii] at z = 4.4 , 2012, 1209.1390.

[50]  J. Miles,et al.  [C ii] 158 μm LUMINOSITIES AND STAR FORMATION RATE IN DUSTY STARBURSTS AND ACTIVE GALACTIC NUCLEI , 2012, 1206.5435.

[51]  J. Geach,et al.  MOLECULAR AND ATOMIC LINE SURVEYS OF GALAXIES. I. THE DENSE, STAR-FORMING GAS PHASE AS A BEACON , 2012, 1206.4693.

[52]  D. O. Astronomy,et al.  THE STAR FORMATION RATE FUNCTION FOR REDSHIFT z ∼ 4–7 GALAXIES: EVIDENCE FOR A UNIFORM BUILDUP OF STAR-FORMING GALAXIES DURING THE FIRST 3 Gyr OF COSMIC TIME , 2012, 1204.3626.

[53]  Oxford,et al.  Predictions for the CO emission of galaxies from a coupled simulation of galaxy formation and photon dominated regions , 2012, 1204.0795.

[54]  Liverpool John Moores University,et al.  DETECTION OF ATOMIC CARBON [C ii] 158 μm AND DUST EMISSION FROM A z = 7.1 QUASAR HOST GALAXY , 2012, 1203.5844.

[55]  Toru Yamada,et al.  ASSEMBLY OF MASSIVE GALAXIES IN A HIGH-z PROTOCLUSTER , 2012, 1203.0814.

[56]  M. Franx,et al.  UV-CONTINUUM SLOPES AT z  ∼  4–7 FROM THE HUDF09+ERS+CANDELS OBSERVATIONS: DISCOVERY OF A WELL-DEFINED UV COLOR–MAGNITUDE RELATIONSHIP FOR z ⩾ 4 STAR-FORMING GALAXIES , 2011, 1109.0994.

[57]  M. Baes,et al.  The reliability of [C ii] as an indicator of the star formation rate , 2011 .

[58]  Christine D. Wilson,et al.  OBSERVATIONS OF Arp 220 USING HERSCHEL-SPIRE: AN UNPRECEDENTED VIEW OF THE MOLECULAR GAS IN AN EXTREME STAR FORMATION ENVIRONMENT , 2011, 1106.5054.

[59]  A. M. Swinbank,et al.  The potential influence of far-infrared emission lines on the selection of high-redshift galaxies , 2011, 1104.1758.

[60]  T. Hayashino,et al.  Lyα emitters at z= 6.5 in the SSA22 field: an area more neutral or void at the end of the re‐ionization epoch★ , 2010, 1011.5313.

[61]  Christopher F. McKee,et al.  THE DARK MOLECULAR GAS , 2010, 1004.5401.

[62]  I. Smail,et al.  A MID-INFRARED IMAGING SURVEY OF SUBMILLIMETER-SELECTED GALAXIES WITH THE SPITZER SPACE TELESCOPE , 2009 .

[63]  C. De Breuck,et al.  Strong (CII) emission at high redshift , 2009, 0904.3793.

[64]  I. Smail,et al.  THE CHANDRA DEEP PROTOCLUSTER SURVEY: EVIDENCE FOR AN ENHANCEMENT OF AGN ACTIVITY IN THE SSA22 PROTOCLUSTER AT z = 3.09 , 2008, 0809.5058.

[65]  Tetsuo Nishimura,et al.  Multi-Object Infrared Camera and Spectrograph (MOIRCS) for the Subaru Telescope* I. Imaging , 2008 .

[66]  J.-S. Huang,et al.  SPITZER OBSERVATIONS OF EXTENDED LYMAN-α CLOUDS IN THE SSA22 FIELD , 2008, 0812.0991.

[67]  G. Helou,et al.  A Compendium of Far-Infrared Line and Continuum Emission for 227 Galaxies Observed by the Infrared Space Observatory , 2008, 0805.2930.

[68]  O. Fèvre,et al.  Spectral Energy Distributions of Hard X-Ray Selected Active Galactic Nuclei in the XMM-Newton Medium Deep Survey , 2007 .

[69]  D. Iono,et al.  A Detection of [C II] Line Emission in the z = 4.7 QSO BR 1202–0725 , 2006, astro-ph/0606043.

[70]  The evolution of the ultraviolet and infrared luminosity densities in the universe at 0 , 2005, astro-ph/0508124.

[71]  A. Weiss,et al.  First detection of [CII]158 μm at high redshift : vigorous star formation in the early universe , 2005, astro-ph/0508064.

[72]  T. Takeuchi,et al.  A model for the infrared dust emission from forming galaxies , 2005, astro-ph/0506625.

[73]  S. Okamura,et al.  Large-Scale Structure of Emission-Line Galaxies at z = 3.1 , 2004 .

[74]  S. Okamura,et al.  A Subaru Search for Lyα Blobs in and around the Protocluster Region At Redshift z = 3.1 , 2004, astro-ph/0405221.

[75]  A. Inoue Evolution of Dust-to-Metal Ratio in Galaxies , 2003, astro-ph/0308204.

[76]  T. Takeuchi,et al.  Infrared spectral energy distribution model for extremely young galaxies , 2003, astro-ph/0304473.

[77]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[78]  J. Kneib,et al.  Submillimeter Galaxies , 2002, astro-ph/0202228.

[79]  D. Elbaz,et al.  Interpreting the Cosmic Infrared Background: Constraints on the Evolution of the Dust-enshrouded Star Formation Rate , 2001, astro-ph/0103067.

[80]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[81]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[82]  NASA Ames Research Center,et al.  Far-Infrared and Submillimeter Emission from Galactic and Extragalactic Photodissociation Regions , 1999, astro-ph/9907255.

[83]  M. A. Malkan,et al.  ISO LWS Spectroscopy of M82: A Unified Evolutionary Model , 1998, astro-ph/9810188.

[84]  J. Kneib,et al.  Erratum: The history of star formation in dusty galaxies , 1998, astro-ph/9806062.

[85]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[86]  A. Tielens,et al.  The neutral atomic phases of the interstellar medium , 1995 .

[87]  Leo Blitz,et al.  DETERMINING STRUCTURE IN MOLECULAR CLOUDS , 1994 .

[88]  S. Charlot,et al.  Spectral evolution of stellar populations using isochrone synthesis , 1993 .

[89]  D. Hollenbach,et al.  Molecule Formation and Infrared Emission in Fast Interstellar Shocks. III. Results for J Shocks in Molecular Clouds , 1989 .

[90]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[91]  E. Salpeter The Luminosity function and stellar evolution , 1955 .