Information scrambling in chaotic systems with dissipation

Chaotic dynamics in closed local quantum systems scrambles quantum information, which is manifested quantitatively in the decay of the out-of-time-ordered correlators (OTOC) of local operators. How is information scrambling affected when the system is coupled to the environment and suffers from dissipation? In this paper, we address this question by defining a dissipative version of OTOC and numerically study its behavior in a prototypical chaotic quantum chain in the presence of dissipation. We find that dissipation leads to not only the overall decay of the scrambled information due to leaking but also structural changes so that the ‘information light cone’ can only reach a finite distance even when the effect of overall decay is removed. Based on this observation we conjecture a modified version of the Lieb-Robinson bound in dissipative systems.

[1]  Cenke Xu,et al.  Out-of-Time-Order Correlation in Marginal Many-Body Localized Systems , 2016, 1611.04058.

[2]  Daniel A. Roberts,et al.  Lieb-Robinson Bound and the Butterfly Effect in Quantum Field Theories. , 2016, Physical review letters.

[3]  B. Swingle,et al.  Slow scrambling in disordered quantum systems , 2016, 1608.03280.

[4]  M. Hafezi,et al.  Measurement of many-body chaos using a quantum clock , 2016, 1607.00079.

[5]  David Perez-Garcia,et al.  Stability of Local Quantum Dissipative Systems , 2013, 1303.4744.

[6]  Matthew B. Hastings,et al.  Spectral Gap and Exponential Decay of Correlations , 2005 .

[7]  Asymptotically decreasing Lieb-Robinson velocity for a class of dissipative quantum dynamics , 2013, 1305.6888.

[8]  D. Grempel,et al.  Chaos, Quantum Recurrences, and Anderson Localization , 1982 .

[9]  B. Swingle,et al.  Quantum Butterfly Effect in Weakly Interacting Diffusive Metals , 2017, 1703.07353.

[10]  Daniel A. Roberts,et al.  Localized shocks , 2014, 1409.8180.

[11]  Zurek,et al.  Decoherence, chaos, and the second law. , 1994, Physical review letters.

[12]  M. Rigol,et al.  From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics , 2015, 1509.06411.

[13]  G. Menezes,et al.  Slow scrambling in sonic black holes , 2017, 1712.05456.

[14]  A. Harrow,et al.  Random Quantum Circuits are Approximate 2-designs , 2008, 0802.1919.

[15]  Zhong-Yi Lu,et al.  Characterizing Many-Body Localization by Out-of-Time-Ordered Correlation , 2016, 1608.03586.

[16]  Michael Zwolak,et al.  Mixed-state dynamics in one-dimensional quantum lattice systems: a time-dependent superoperator renormalization algorithm. , 2004, Physical review letters.

[17]  X. Qi,et al.  Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models , 2016, 1609.07832.

[18]  Hui Zhai,et al.  Out-of-time-order correlation for many-body localization. , 2016, Science bulletin.

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  Bruno Nachtergaele,et al.  Propagation of Correlations in Quantum Lattice Systems , 2006, math-ph/0603064.

[21]  S. Shenker,et al.  Multiple shocks , 2013, 1312.3296.

[22]  F. Pollmann,et al.  Diffusive Hydrodynamics of Out-of-Time-Ordered Correlators with Charge Conservation , 2017, Physical Review X.

[23]  Nicole Yunger Halpern Jarzynski-like equality for the out-of-time-ordered correlator , 2016, 1609.00015.

[24]  Ikeda,et al.  Quantum-classical correspondence in many-dimensional quantum chaos. , 1988, Physical review letters.

[25]  B. M. Fulk MATH , 1992 .

[26]  V. Galitski,et al.  Out-of-time-order correlators in finite open systems. , 2017, Physical review. B.

[27]  Daniel A. Roberts,et al.  Chaos and complexity by design , 2016, 1610.04903.

[28]  David Poulin,et al.  Lieb-Robinson bound and locality for general markovian quantum dynamics. , 2010, Physical review letters.

[29]  J. Polchinski,et al.  The spectrum in the Sachdev-Ye-Kitaev model , 2016, 1601.06768.

[30]  Guifré Vidal Efficient simulation of one-dimensional quantum many-body systems. , 2004, Physical review letters.

[31]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[32]  S. Shenker,et al.  Stringy effects in scrambling , 2014, 1412.6087.

[33]  Yichen Huang,et al.  Out‐of‐time‐ordered correlators in many‐body localized systems , 2016, 1608.01091.

[34]  Martin Kliesch,et al.  Quasilocality and efficient simulation of markovian quantum dynamics. , 2011, Physical review letters.

[35]  P. Hayden,et al.  Measuring the scrambling of quantum information , 2016, 1602.06271.

[36]  J. McGreevy,et al.  Strange metal from local quantum chaos , 2017, 1711.02686.

[37]  N. Christensen,et al.  Quantum Delta-Kicked Rotor: Experimental Observation of Decoherence , 1998 .

[38]  Daniel A. Roberts,et al.  Diagnosing Chaos Using Four-Point Functions in Two-Dimensional Conformal Field Theory. , 2015, Physical review letters.

[39]  Nicole Yunger Halpern,et al.  Resilience of scrambling measurements , 2018, Physical Review A.

[40]  D. Huse,et al.  Hydrodynamics of operator spreading and quasiparticle diffusion in interacting integrable systems , 2018, Physical Review B.

[41]  D. Huse,et al.  Out‐of‐time‐order correlations in many‐body localized and thermal phases , 2016, 1610.00220.

[42]  F. Brandão,et al.  Local random quantum circuits are approximate polynomial-designs: numerical results , 2012, 1208.0692.

[43]  J. Cirac,et al.  Strong and weak thermalization of infinite nonintegrable quantum systems. , 2010, Physical review letters.

[44]  Sriram Ganeshan,et al.  Lyapunov Exponent and Out-of-Time-Ordered Correlator's Growth Rate in a Chaotic System. , 2016, Physical review letters.

[45]  D. Huse,et al.  Velocity-dependent Lyapunov exponents in many-body quantum, semiclassical, and classical chaos , 2018, Physical Review B.

[46]  M. L. Wall,et al.  Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet , 2016, Nature Physics.

[47]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[48]  Nicole Yunger Halpern,et al.  Quasiprobability behind the out-of-time-ordered correlator , 2017, 1704.01971.

[49]  G. Casati,et al.  Stochastic behavior in classical and quantum hamiltonian systems : Volta Memorial Conference, Como, 1977 , 1979 .

[50]  Masahito Ueda,et al.  Exact out-of-time-ordered correlation functions for an interacting lattice fermion model , 2016, 1610.01251.

[51]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[52]  J. Maldacena,et al.  A bound on chaos , 2015, Journal of High Energy Physics.

[53]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[54]  Yaliang Li,et al.  SCI , 2021, Proceedings of the 30th ACM International Conference on Information & Knowledge Management.

[55]  이화영 X , 1960, Chinese Plants Names Index 2000-2009.

[56]  Jeongwan Haah,et al.  Operator Spreading in Random Unitary Circuits , 2017, 1705.08975.

[57]  S. Sondhi,et al.  Operator Hydrodynamics, OTOCs, and Entanglement Growth in Systems without Conservation Laws , 2017, 1705.08910.

[58]  C. Mendl,et al.  Scrambling and thermalization in a diffusive quantum many-body system , 2016, 1612.02434.

[59]  D. Stanford,et al.  On entanglement spreading in chaotic systems , 2016, Journal of High Energy Physics.

[60]  Jeongwan Haah,et al.  Quantum Entanglement Growth Under Random Unitary Dynamics , 2016, 1608.06950.

[61]  Bruno Nachtergaele,et al.  Lieb-Robinson Bounds and Existence of the Thermodynamic Limit for a Class of Irreversible Quantum Dynamics , 2011, 1103.1122.

[62]  D. W. Robinson,et al.  The finite group velocity of quantum spin systems , 1972 .

[63]  Daniel A. Roberts,et al.  Chaos in quantum channels , 2015, 1511.04021.

[64]  Yevgeny Bar Lev,et al.  Information propagation in isolated quantum systems , 2017, 1702.03929.

[65]  J. Goold,et al.  Thermodynamics of quantum information scrambling. , 2016, Physical review. E.

[66]  Cheng-Ju Lin,et al.  Out-of-time-ordered correlators in a quantum Ising chain , 2018, 1801.01636.

[67]  W. Marsden I and J , 2012 .

[68]  S. Shenker,et al.  Black holes and the butterfly effect , 2013, Journal of High Energy Physics.

[69]  L. Balents,et al.  Strongly Correlated Metal Built from Sachdev-Ye-Kitaev Models. , 2017, Physical review letters.

[70]  Franco Nori,et al.  QuTiP: An open-source Python framework for the dynamics of open quantum systems , 2011, Comput. Phys. Commun..

[71]  B. Zeng,et al.  Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator , 2016, 1609.01246.