Observations and preliminary science results from the first 100 sols of MSL Rover Environmental Monitoring Station ground temperature sensor measurements at Gale Crater

We describe preliminary results from the first 100 sols of ground temperature measurements along the Mars Science Laboratory's traverse from Bradbury Landing to Rocknest in Gale. The ground temperature data show long‐term increases in mean temperature that are consistent with seasonal evolution. Deviations from expected temperature trends within the diurnal cycle are observed and may be attributed to rover and environmental effects. Fits to measured diurnal temperature amplitudes using a thermal model suggest that the observed surfaces have thermal inertias in the range of 265–375 J m−2 K−1 s−1/2, which are within the range of values determined from orbital measurements and are consistent with the inertias predicted from the observed particle sizes on the uppermost surface near the rover. Ground temperatures at Gale Crater appear to warm earlier and cool later than predicted by the model, suggesting that there are multiple unaccounted for physical conditions or processes in our models. Where the Mars Science Laboratory (MSL) descent engines removed a mobile layer of dust and fine sediments from over rockier material, the diurnal temperature profile is closer to that expected for a homogeneous surface, suggesting that the mobile materials on the uppermost surface may be partially responsible for the mismatch between observed temperatures and those predicted for materials having a single thermal inertia. Models of local stratigraphy also implicate thermophysical heterogeneity at the uppermost surface as a potential contributor to the observed diurnal temperature cycle.

[1]  Mark T. Lemmon,et al.  Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission , 2014 .

[2]  Mark T. Lemmon,et al.  Pressure observations by the Curiosity rover: Initial results , 2014 .

[3]  F. Falcini,et al.  Hydrodynamic and suspended sediment transport controls on river mouth morphology , 2014 .

[4]  N. Bridges,et al.  Accentuation of Subtle Rock-density Differences by Aeolian Erosion , 2013 .

[5]  N. Bridges,et al.  Characteristics of pebble‐ and cobble‐sized clasts along the Curiosity rover traverse from Bradbury Landing to Rocknest , 2013 .

[6]  R. C. Wiens,et al.  Martian Fluvial Conglomerates at Gale Crater , 2013, Science.

[7]  J. Grant,et al.  Preliminary Geological Map of the Peace Vallis Fan Integrated with In Situ Mosaics From the Curiosity Rover, Gale Crater, Mars , 2013 .

[8]  B. Ehlmann,et al.  Using Outcrop Exposures on the Road to Yellowknife Bay to Build a Stratigraphic Column, Gale Crater, Mars , 2013 .

[9]  H. Kieffer Thermal model for analysis of Mars infrared mapping , 2013 .

[10]  Jean-Pierre Bibring,et al.  Global maps of anhydrous minerals at the surface of Mars from OMEGA/MEx , 2012 .

[11]  M. Wolff,et al.  Aphelion water‐ice cloud mapping and property retrieval using the OMEGA imaging spectrometer onboard Mars Express , 2012 .

[12]  James J. Wray,et al.  Gale crater: the Mars Science Laboratory/Curiosity Rover Landing Site , 2012, International Journal of Astrobiology.

[13]  E. Sebastián,et al.  REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover , 2012 .

[14]  R. Anderson,et al.  Mars Science Laboratory Mission and Science Investigation , 2012 .

[15]  M. Watkins,et al.  Selection of the Mars Science Laboratory Landing Site , 2012 .

[16]  A. Vasavada,et al.  Assessment of Environments for Mars Science Laboratory Entry, Descent, and Surface Operations , 2012 .

[17]  D. Ming,et al.  Characterization and Calibration of the CheMin Mineralogical Instrument on Mars Science Laboratory , 2012 .

[18]  M. Golombek,et al.  Surface Properties of the Mars Science Laboratory Candidate Landing Sites: Characterization from Orbit and Predictions , 2012 .

[19]  V. Hamilton,et al.  Distribution and characteristics of Adirondack-class basalt as observed by Mini-TES in Gusev crater, Mars and its possible volcanic source , 2012 .

[20]  Javier Gómez-Elvira,et al.  The Rover Environmental Monitoring Station Ground Temperature Sensor: A Pyrometer for Measuring Ground Temperature on Mars , 2010, Sensors.

[21]  David Hinson,et al.  Atmospheric risk assessment for the Mars Science Laboratory Entry, Descent, and Landing system , 2010, 2010 IEEE Aerospace Conference.

[22]  M. Mellon,et al.  Initial results from the thermal and electrical conductivity probe (TECP) on Phoenix , 2010 .

[23]  J. Grotzinger,et al.  Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater , 2010 .

[24]  James F. Bell,et al.  Geologic mapping and characterization of Gale Crater and implications for its potential as a Mars Science Laboratory landing site , 2009 .

[25]  J. Bandfield,et al.  Mineralogical characterization of Mars Science Laboratory candidate landing sites from THEMIS and TES data , 2009 .

[26]  P. Christensen,et al.  A model of thermal conductivity for planetary soils: 2. Theory for cemented soils , 2009 .

[27]  Michael D. Smith THEMIS Observations of Mars Aerosol Optical Depth from 2002-2008 , 2009 .

[28]  Javier Gómez-Elvira,et al.  FTIR reflectance of selected minerals and their mixtures: implications for ground temperature-sensor monitoring on Mars surface environment (NASA/MSL-Rover Environmental Monitoring Station). , 2009, Journal of environmental monitoring : JEM.

[29]  Raymond E. Arvidson,et al.  Compact Reconnaissance Imaging Spectrometer for Mars investigation and data set from the Mars Reconnaissance Orbiter's primary science phase , 2009 .

[30]  William H. Farrand,et al.  Spirit Mars Rover Mission to the Columbia Hills, Gusev Crater: Mission overview and selected results from the Cumberland Ridge to Home Plate , 2008 .

[31]  M. Mellon,et al.  The Martian Surface: The thermal inertia of the surface of Mars , 2008 .

[32]  M. Mellon,et al.  Apparent thermal inertia and the surface heterogeneity of Mars , 2007 .

[33]  M. Mellon,et al.  Thermal behavior of horizontally mixed surfaces on Mars , 2007 .

[34]  S. Nowicki,et al.  Rock abundance on Mars from the Thermal Emission Spectrometer , 2007 .

[35]  J. Bandfield High-resolution subsurface water-ice distributions on Mars , 2006, Nature.

[36]  P. Christensen,et al.  High-resolution thermal inertia derived from the Thermal Emission Imaging System (THEMIS): Thermal model and applications , 2006 .

[37]  Mark T. Lemmon,et al.  Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini‐TES , 2006 .

[38]  Jeffrey R. Johnson,et al.  The rocks of Gusev Crater as viewed by the Mini‐TES instrument , 2006 .

[39]  Robin L. Fergason,et al.  Physical properties of the Mars Exploration Rover landing sites as inferred from Mini‐TES–derived thermal inertia , 2006 .

[40]  G. Neumann,et al.  Diurnal variation and radiative influence of Martian water ice clouds , 2006 .

[41]  Amitabha Ghosh,et al.  An integrated view of the chemistry and mineralogy of martian soils , 2005, Nature.

[42]  A. McEwen,et al.  Mars Exploration Rover candidate landing sites as viewed by THEMIS , 2005 .

[43]  Raymond E. Arvidson,et al.  Global thermal inertia and surface properties of Mars from the MGS mapping mission , 2005 .

[44]  Jimmy D Bell,et al.  Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity , 2004, Science.

[45]  Joshua L. Bandfield,et al.  Atmospheric correction and surface spectral unit mapping using Thermal Emission Imaging System data , 2004 .

[46]  A. Verhoef Remote estimation of thermal inertia and soil heat flux for bare soil , 2004 .

[47]  Thomas H. Prettyman,et al.  The presence and stability of ground ice in the southern hemisphere of Mars , 2004 .

[48]  Bruce M. Jakosky,et al.  Mars Thermal Inertia from THEMIS Data , 2004 .

[49]  B. Jakosky,et al.  Surficial properties in Gale Crater, Mars, from Mars Odyssey THEMIS data , 2004 .

[50]  N. Bridges,et al.  Selection of the Mars Exploration Rover landing sites , 2003 .

[51]  J. Bandfield,et al.  Aeolian processes in Proctor Crater on Mars: Sedimentary history as analyzed from multiple data sets , 2003 .

[52]  Mark I. Richardson,et al.  Thermal Emission Imaging System (THEMIS) infrared observations of atmospheric dust and water ice cloud optical depth , 2003 .

[53]  D. Paige,et al.  Viking‐era diurnal water‐ice clouds , 2003 .

[54]  S. Ruff,et al.  Bright and dark regions on Mars: Particle size and mineralogical characteristics based on thermal emission spectrometer data , 2002 .

[55]  B. Jakosky,et al.  Surficial Geologic Surveys of Gale Crater and Melas Chasma, Mars: Integration of Remote-Sensing Data , 2002 .

[56]  P. Christensen,et al.  Exposed Water Ice Discovered near the South Pole of Mars , 2002, Science.

[57]  M. Mellon,et al.  Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results , 2001 .

[58]  Scot C. R. Rafkin,et al.  The Mars Regional Atmospheric Modeling System: Model Description and Selected Simulations , 2001 .

[59]  D. A. Howard,et al.  A thermal emission spectral library of rock-forming minerals , 2000 .

[60]  M. Mellon,et al.  High-Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer , 2000 .

[61]  R. Todd Clancy,et al.  Hubble Space Telescope observations of the Martian aphelion cloud belt prior to the Pathfinder mission: Seasonal and interannual variations , 1999 .

[62]  P. Christensen,et al.  Variations in Martian surface composition and cloud occurrence determined from thermal infrared spectroscopy: Analysis of Viking and Mariner 9 data , 1998 .

[63]  P. Christensen,et al.  Thermal conductivity measurements of particulate materials 2. Results , 1997 .

[64]  H. J. Moore,et al.  Selection of the Mars Pathfinder landing site , 1997 .

[65]  Duane O. Muhleman,et al.  WATER VAPOR SATURATION AT LOW ALTITUDES AROUND MARS APHELION : A KEY TO MARS CLIMATE ? , 1996 .

[66]  B. Murray,et al.  Thermal inertias in the upper millimeters of the Martian surface derived using Phobos' shadow , 1995 .

[67]  Philip R. Christensen,et al.  The spatial distribution of rocks on mars , 1986 .

[68]  W. Stringer,et al.  Handbook for Sea Ice Analysis and Forecasting. , 1984 .

[69]  F. Palluconi,et al.  Thermal inertia mapping of Mars from 60°S to 60°N , 1981 .

[70]  Terry Z. Martin,et al.  Thermal and albedo mapping of Mars during the Viking primary mission , 1977 .

[71]  F. Flasar,et al.  Diurnal behaviour of water on Mars , 1976 .

[72]  G. Neugebauer,et al.  Preliminary report on infrared radiometric measurements from the Mariner 9 spacecraft , 1973 .

[73]  Satyandra K. Gupta,et al.  Mars Hand Lens Imager (MAHLI) Efforts and Observations at the Rocknest Eolian Sand Shadow in Curiosity's Gale Crater Field Site , 2013 .

[74]  M. Malin,et al.  The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission , 2004 .

[75]  R. Ditteon Daily temperature variations on Mars , 1982 .

[76]  J. Taylor An Introduction to Error Analysis , 1982 .