On the asymptotics of marginal regression splines with longitudinal data

There have been studies on how the asymptotic efficiency of a nonparametric function estimator depends on the handling of the within-cluster correlation when nonparametric regression models are used on longitudinal or cluster data. In particular, methods based on smoothing splines and local polynomial kernels exhibit different behaviour. We show that the generalized estimation equations based on weighted least squares regression splines for the nonparametric function have an interesting property: the asymptotic bias of the estimator does not depend on the working correlation matrix, but the asymptotic variance, and therefore the mean squared error, is minimized when the true correlation structure is specified. This property of the asymptotic bias distinguishes regression splines from smoothing splines. Copyright 2008, Oxford University Press.

[1]  Xiaotong Shen,et al.  Local asymptotics for regression splines and confidence regions , 1998 .

[2]  J. Raz,et al.  Semiparametric Stochastic Mixed Models for Longitudinal Data , 1998 .

[3]  Understanding nonparametric estimation for clustered data , 2006 .

[4]  R. Carroll,et al.  Nonparametric Function Estimation for Clustered Data When the Predictor is Measured without/with Error , 2000 .

[5]  T. Severini,et al.  Quasi-Likelihood Estimation in Semiparametric Models , 1994 .

[6]  B. Silverman,et al.  Spline Smoothing: The Equivalent Variable Kernel Method , 1984 .

[7]  P. Diggle,et al.  Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconverters. , 1994, Biometrics.

[8]  R. Carroll,et al.  Marginal Longitudinal Nonparametric Regression , 2002 .

[9]  W. J. Studden,et al.  Asymptotic Integrated Mean Square Error Using Least Squares and Bias Minimizing Splines , 1980 .

[10]  R. Carroll,et al.  Equivalent Kernels of Smoothing Splines in Nonparametric Regression for Clustered/Longitudinal Data , 2004 .

[11]  Carl de Boor,et al.  A bound on the _{∞}-norm of ₂-approximation by splines in terms of a global mesh ratio , 1976 .

[12]  Philip Smith,et al.  Asymptotic properties of best ₂[0,1] approximation by splines with variable knots , 1978 .

[13]  Jianhua Z. Huang,et al.  Efficient estimation in marginal partially linear models for longitudinal/clustered data using splines , 2007 .

[14]  Naisyin Wang Marginal nonparametric kernel regression accounting for within‐subject correlation , 2003 .

[15]  Kani Chen,et al.  Local polynomial regression analysis of clustered data , 2005 .

[16]  Douglas W. Nychka,et al.  Splines as Local Smoothers , 1995 .

[17]  Zhongyi Zhu,et al.  Estimation in a semiparametric model for longitudinal data with unspecified dependence structure , 2002 .

[18]  D. Ruppert,et al.  On the asymptotics of penalized splines , 2008 .

[19]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[20]  R. Carroll,et al.  Efficient Semiparametric Marginal Estimation for Longitudinal/Clustered Data , 2005 .

[21]  Jianhua Z. Huang Local asymptotics for polynomial spline regression , 2003 .

[22]  Zhongyi Zhu,et al.  Robust Estimation in Generalized Partial Linear Models for Clustered Data , 2005 .

[23]  L. Schumaker Spline Functions: Basic Theory , 1981 .