A Global k-means Approach for Autonomous Cluster Initialization of Probabilistic Neural Network

A Global k-means Approach for Autonomous Cluster Initialization of Probabilistic Neural Network

[1]  M. Victor Wickerhauser,et al.  Adapted wavelet analysis from theory to software , 1994 .

[2]  Frederick Zarndt,et al.  A Comprehensive Case Study: An Examination of Machine Learning and Connectionist Algorithms , 1995 .

[3]  Sheng Chen,et al.  Robust maximum likelihood training of heteroscedastic probabilistic neural networks , 1998, Neural Networks.

[4]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[5]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[6]  D. F. Specht,et al.  Probabilistic neural networks for classification, mapping, or associative memory , 1988, IEEE 1988 International Conference on Neural Networks.

[7]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.

[8]  Michael I. Jordan,et al.  On Convergence Properties of the EM Algorithm for Gaussian Mixtures , 1996, Neural Computation.

[9]  Gary G. Yen,et al.  Wavelet packet feature extraction for vibration monitoring , 2000, IEEE Trans. Ind. Electron..

[10]  Nikos A. Vlassis,et al.  The global k-means clustering algorithm , 2003, Pattern Recognit..

[11]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .

[12]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[13]  Carlos Ordonez,et al.  FREM: fast and robust EM clustering for large data sets , 2002, CIKM '02.

[14]  Ronald R. Coifman,et al.  Entropy-based algorithms for best basis selection , 1992, IEEE Trans. Inf. Theory.

[15]  Michael R. Berthold,et al.  Constructive training of probabilistic neural networks , 1998, Neurocomputing.

[16]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .