BCR-ABL triggers a glucose-dependent survival program during leukemogenesis through the suppression of TXNIP

[1]  J. Zuber,et al.  BRD4 degradation blocks expression of MYC and multiple forms of stem cell resistance in Ph+ chronic myeloid leukemia , 2022, American journal of hematology.

[2]  X. Tong,et al.  MondoA-TXNIP axis maintains regulatory T cell identity and function in colorectal cancer microenvironment. , 2021, Gastroenterology.

[3]  S. Fan,et al.  CircECE1 activates energy metabolism in osteosarcoma by stabilizing c-Myc , 2020, Molecular cancer.

[4]  C. Iacobuzio-Donahue,et al.  Pancreatic cancers suppress negative feedback of glucose transport to reprogram chromatin for metastasis , 2020, Nature Communications.

[5]  A. Chinnaiyan,et al.  Functional and Mechanistic Interrogation of BET Bromodomain Degraders for the Treatment of Metastatic Castration-resistant Prostate Cancer , 2019, Clinical Cancer Research.

[6]  Lei Gao,et al.  c-Myc-driven glycolysis via TXNIP suppression is dependent on glutaminase-MondoA axis in prostate cancer. , 2018, Biochemical and biophysical research communications.

[7]  M. Sharpley,et al.  Extracellular Matrix Remodeling Regulates Glucose Metabolism through TXNIP Destabilization , 2018, Cell.

[8]  C. Deng,et al.  BRCA1 deficiency sensitizes breast cancer cells to bromodomain and extra-terminal domain (BET) inhibition , 2018, Oncogene.

[9]  L. Yao,et al.  NDRG2 facilitates colorectal cancer differentiation through the regulation of Skp2-p21/p27 axis , 2018, Oncogene.

[10]  Guodong Yang,et al.  Semi-random mutagenesis profile of BCR-ABL during imatinib resistance acquirement in K562 cells , 2017, Molecular medicine reports.

[11]  Eyal Gottlieb,et al.  Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemic stem cells , 2017, Nature Medicine.

[12]  S. Jhanwar,et al.  Resistance to imatinib in patients with chronic myelogenous leukemia and the splice variant BCR-ABL1(35INS). , 2016, Leukemia research.

[13]  P. Chiao,et al.  FBW7 (F-box and WD Repeat Domain-Containing 7) Negatively Regulates Glucose Metabolism by Targeting the c-Myc/TXNIP (Thioredoxin-Binding Protein) Axis in Pancreatic Cancer , 2016, Clinical Cancer Research.

[14]  C. Peng,et al.  Chronic Myeloid Leukemia (CML) Mouse Model in Translational Research. , 2016, Methods in molecular biology.

[15]  C. Dang,et al.  MYC, Metabolism, and Cancer. , 2015, Cancer discovery.

[16]  Adam L Cohen,et al.  Metabolic reprogramming in triple-negative breast cancer through Myc suppression of TXNIP , 2015, Proceedings of the National Academy of Sciences.

[17]  L. Yao,et al.  Tumor suppressor NDRG2 tips the balance of oncogenic TGF-β via EMT inhibition in colorectal cancer , 2014, Oncogenesis.

[18]  A. Shaywitz,et al.  AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. , 2013, Molecular cell.

[19]  David E. Muench,et al.  c-Myc and Cancer Metabolism , 2012, Clinical Cancer Research.

[20]  Hui-Kuan Lin,et al.  Activation of Ras/PI3K/ERK pathway induces c-Myc stabilization to upregulate argininosuccinate synthetase, leading to arginine deiminase resistance in melanoma cells. , 2012, Cancer research.

[21]  R. Bhatia,et al.  Activation of stress response gene SIRT1 by BCR-ABL promotes leukemogenesis. , 2012, Blood.

[22]  Daniela Cilloni,et al.  Molecular Pathways: BCR-ABL , 2011, Clinical Cancer Research.

[23]  B. Quesnel,et al.  Exploiting Mitochondrial Dysfunction for Effective Elimination of Imatinib-Resistant Leukemic Cells , 2011, PloS one.

[24]  Hyoung‐Chin Kim,et al.  Vitamin D3 up-regulated protein 1 deficiency accelerates liver regeneration after partial hepatectomy in mice. , 2011, Journal of hepatology.

[25]  M. Talpaz,et al.  Seeking the causes and solutions to imatinib-resistance in chronic myeloid leukemia , 2011, Leukemia.

[26]  T. Clackson,et al.  Targeting the BCR-ABL Signaling Pathway in Therapy-Resistant Philadelphia Chromosome-Positive Leukemia , 2010, Clinical Cancer Research.

[27]  J. Rathmell,et al.  Aerobic glycolysis suppresses p53 activity to provide selective protection from apoptosis upon loss of growth signals or inhibition of BCR-Abl. , 2010, Cancer research.

[28]  D. Ayer,et al.  Transcriptional and Translational Downregulation of Thioredoxin Interacting Protein Is Required for Metabolic Reprogramming during G(1). , 2010, Genes & cancer.

[29]  C. Peng,et al.  Critical molecular pathways in cancer stem cells of chronic myeloid leukemia , 2010, Leukemia.

[30]  E. Gottlieb,et al.  Targeting metabolic transformation for cancer therapy , 2010, Nature Reviews Cancer.

[31]  J. Klawitter,et al.  Metabolic characteristics of imatinib resistance in chronic myeloid leukaemia cells , 2009, British journal of pharmacology.

[32]  J. Klawitter,et al.  Abnormalities in Glucose Uptake and Metabolism in Imatinib-Resistant Human BCR-ABL–Positive Cells , 2009, Clinical Cancer Research.

[33]  D. Ayer,et al.  Glucose sensing by MondoA:Mlx complexes: A role for hexokinases and direct regulation of thioredoxin-interacting protein expression , 2008, Proceedings of the National Academy of Sciences.

[34]  Roger A. Davis,et al.  Txnip balances metabolic and growth signaling via PTEN disulfide reduction , 2008, Proceedings of the National Academy of Sciences.

[35]  B. Druker,et al.  Applying the discovery of the Philadelphia chromosome. , 2007, The Journal of clinical investigation.

[36]  D. Muoio TXNIP links redox circuitry to glucose control. , 2007, Cell metabolism.

[37]  Junia V. Melo,et al.  Chronic myeloid leukaemia as a model of disease evolution in human cancer , 2007, Nature Reviews Cancer.

[38]  James D. Griffin,et al.  Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia , 2007, Nature Reviews Cancer.

[39]  J. Melo,et al.  The presence of a BCR-ABL mutant allele in CML does not always explain clinical resistance to imatinib , 2006, Leukemia.

[40]  B. Druker,et al.  Targeted CML therapy: controlling drug resistance, seeking cure. , 2006, Current opinion in genetics & development.

[41]  K. Basso,et al.  BCL6 interacts with the transcription factor Miz-1 to suppress the cyclin-dependent kinase inhibitor p21 and cell cycle arrest in germinal center B cells , 2005, Nature Immunology.

[42]  S. L. Barcelona,et al.  Intraoperative pediatric blood transfusion therapy: a review of common issues. Part I: hematologic and physiologic differences from adults; metabolic and infectious risks , 2005, Paediatric anaesthesia.

[43]  G. Daley,et al.  Chronic myeloid leukaemia: an investigation into the role of Bcr-Abl-induced abnormalities in glucose transport regulation , 2005, Oncogene.

[44]  S. Gottschalk,et al.  Imatinib (STI571)-Mediated Changes in Glucose Metabolism in Human Leukemia BCR-ABL-Positive Cells , 2004, Clinical Cancer Research.

[45]  Bruce J. Aronow,et al.  Chromatin Immunoprecipitation Assays Footprints in Glycolytic Genes by Evaluation of Myc E-box Phylogenetic Supplemental Material , 2004 .

[46]  B. Clurman,et al.  The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[47]  B. Druker,et al.  Specific Targeted Therapy of Chronic Myelogenous Leukemia with Imatinib , 2003, Pharmacological Reviews.

[48]  P. N. Rao,et al.  Clinical Resistance to STI-571 Cancer Therapy Caused by BCR-ABL Gene Mutation or Amplification , 2001, Science.

[49]  J. Massagué,et al.  Repression of p15INK4b expression by Myc through association with Miz-1 , 2001, Nature Cell Biology.