Fast Bayesian Factor Analysis via Automatic Rotations to Sparsity
暂无分享,去创建一个
[1] N. L. Johnson,et al. Multivariate Analysis , 1958, Nature.
[2] H. Kaiser. The varimax criterion for analytic rotation in factor analysis , 1958 .
[3] G. Kaufman,et al. Bayesian factor analysis , 1973 .
[4] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[5] New York Dover,et al. ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .
[6] P. Green. On Use of the EM Algorithm for Penalized Likelihood Estimation , 1990 .
[7] Xiao-Li Meng,et al. Using EM to Obtain Asymptotic Variance-Covariance Matrices: The SEM Algorithm , 1991 .
[8] Xiao-Li Meng,et al. Maximum likelihood estimation via the ECM algorithm: A general framework , 1993 .
[9] S. Chib,et al. Bayesian analysis of binary and polychotomous response data , 1993 .
[10] E. George,et al. Journal of the American Statistical Association is currently published by American Statistical Association. , 2007 .
[11] J. Geweke,et al. Measuring the pricing error of the arbitrage pricing theory , 1996 .
[12] D. Rubin,et al. Parameter expansion to accelerate EM : The PX-EM algorithm , 1997 .
[13] Naonori Ueda,et al. Deterministic annealing EM algorithm , 1998, Neural Networks.
[14] Xiao-Li Meng,et al. Seeking efficient data augmentation schemes via conditional and marginal augmentation , 1999 .
[15] Jun S. Liu,et al. Parameter Expansion for Data Augmentation , 1999 .
[16] Michael E. Tipping,et al. Probabilistic Principal Component Analysis , 1999 .
[17] Xiao-Li Meng,et al. The Art of Data Augmentation , 2001 .
[18] Thomas P. Minka,et al. Using lower bounds to approxi-mate integrals , 2001 .
[19] David A. Van Dyk,et al. The one-step-late PXEM algorithm , 2003, Stat. Comput..
[20] Matthew West,et al. Bayesian factor regression models in the''large p , 2003 .
[21] Michael A. West,et al. BAYESIAN MODEL ASSESSMENT IN FACTOR ANALYSIS , 2004 .
[22] J. S. Rao,et al. Spike and slab variable selection: Frequentist and Bayesian strategies , 2005, math/0505633.
[23] Thomas L. Griffiths,et al. Infinite latent feature models and the Indian buffet process , 2005, NIPS.
[24] R. Tibshirani,et al. Sparsity and smoothness via the fused lasso , 2005 .
[25] R. Tibshirani,et al. Sparse Principal Component Analysis , 2006 .
[26] Yuan Qi,et al. Parameter Expanded Variational Bayesian Methods , 2006, NIPS.
[27] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[28] Michael I. Jordan,et al. Hierarchical Beta Processes and the Indian Buffet Process , 2007, AISTATS.
[29] Yee Whye Teh,et al. Stick-breaking Construction for the Indian Buffet Process , 2007, AISTATS.
[30] Y. Teh,et al. Stick-breaking construction for the Indian buffet , 2007 .
[31] A. Owen,et al. AGEMAP: A Gene Expression Database for Aging in Mice , 2007, PLoS genetics.
[32] Nicolai Meinshausen,et al. Relaxed Lasso , 2007, Comput. Stat. Data Anal..
[33] Hal Daumé,et al. The Infinite Hierarchical Factor Regression Model , 2008, NIPS.
[34] M. West,et al. High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics , 2008, Journal of the American Statistical Association.
[35] Yee Whye Teh,et al. Variational Inference for the Indian Buffet Process , 2009, AISTATS.
[36] R. Tibshirani,et al. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. , 2009, Biostatistics.
[37] Guillermo Sapiro,et al. Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations , 2009, NIPS.
[38] David B Dunson,et al. Default Prior Distributions and Efficient Posterior Computation in Bayesian Factor Analysis , 2009, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.
[39] Lawrence Carin,et al. Nonparametric factor analysis with beta process priors , 2009, ICML '09.
[40] Trevor Hastie,et al. Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.
[41] Chuanhai Liu,et al. Parameter Expansion and Efficient Inference , 2010, 1104.2407.
[42] Mike West,et al. Bayesian Learning in Sparse Graphical Factor Models via Variational Mean-Field Annealing , 2010, J. Mach. Learn. Res..
[43] Alexander Ilin,et al. Transformations in variational Bayesian factor analysis to speed up learning , 2010, Neurocomputing.
[44] Hedibert Freitas Lopes,et al. Parsimonious Bayesian Factor Analysis when the Number of Factors is Unknown , 2010 .
[45] Xiao-Li Meng,et al. Cross-fertilizing strategies for better EM mountain climbing and DA field exploration: A graphical guide book , 2010, 1104.1897.
[46] Zoubin Ghahramani,et al. Nonparametric Bayesian Sparse Factor Models with application to Gene Expression modelling , 2010, The Annals of Applied Statistics.
[47] Patrick O. Perry,et al. A Rotation Test to Verify Latent Structure , 2010, J. Mach. Learn. Res..
[48] Lawrence Carin,et al. Variational Inference for Stick-Breaking Beta Process Priors , 2011, ICML.
[49] Thomas L. Griffiths,et al. The Indian Buffet Process: An Introduction and Review , 2011, J. Mach. Learn. Res..
[50] D. Dunson,et al. Sparse Bayesian infinite factor models. , 2011, Biometrika.
[51] Hemant Ishwaran,et al. Consistency of spike and slab regression , 2011 .
[52] A. V. D. Vaart,et al. Needles and Straw in a Haystack: Posterior concentration for possibly sparse sequences , 2012, 1211.1197.
[53] Michael I. Jordan,et al. Stick-Breaking Beta Processes and the Poisson Process , 2012, AISTATS.
[54] James G. Scott,et al. Bayesian Inference for Logistic Models Using Pólya–Gamma Latent Variables , 2012, 1205.0310.
[55] Zoubin Ghahramani,et al. A Non-parametric Conditional Factor Regression Model for Multi-Dimensional Input and Response , 2014, AISTATS.
[56] Debdeep Pati,et al. Posterior contraction in sparse Bayesian factor models for massive covariance matrices , 2012, 1206.3627.
[57] Veronika Rockova,et al. EMVS: The EM Approach to Bayesian Variable Selection , 2014 .
[58] Arto Klami,et al. Polya-gamma augmentations for factor models , 2014, ACML.
[59] A. V. D. Vaart,et al. BAYESIAN LINEAR REGRESSION WITH SPARSE PRIORS , 2014, 1403.0735.
[60] N. Pillai,et al. Dirichlet–Laplace Priors for Optimal Shrinkage , 2014, Journal of the American Statistical Association.
[61] V. Rocková,et al. Bayesian estimation of sparse signals with a continuous spike-and-slab prior , 2018 .
[62] E. George,et al. The Spike-and-Slab LASSO , 2018 .