Alternative hyper-heuristic strategies for multi-method global optimization

The purpose of this paper is to investigate the use of meta-heuristics as low-level heuristics in a hyper-heuristic framework. A novel multi-method hyper-heuristic algorithm which makes use of a number of common meta-heuristics is presented. Algorithm performance is evaluated on a diverse set of real parameter benchmark problems and meaningful conclusions are drawn with respect to the selection of alternative low-level heuristics and the acceptance of the obtained solutions within the proposed multi-method meta-heuristic approach.

[1]  Frans van den Bergh,et al.  An analysis of particle swarm optimizers , 2002 .

[2]  Andries Petrus Engelbrecht,et al.  An analysis of heterogeneous cooperative algorithms , 2009, 2009 IEEE Congress on Evolutionary Computation.

[3]  A. Engelbrecht,et al.  A new locally convergent particle swarm optimiser , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[4]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[5]  J. Kennedy,et al.  Population structure and particle swarm performance , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[6]  Edmund K. Burke,et al.  A simulated annealing based hyperheuristic for determining shipper sizes for storage and transportation , 2007, Eur. J. Oper. Res..

[7]  Graham Kendall,et al.  A Classification of Hyper-heuristic Approaches , 2010 .

[8]  Graham Kendall,et al.  A Tabu-Search Hyperheuristic for Timetabling and Rostering , 2003, J. Heuristics.

[9]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[10]  Ronald L. Rardin,et al.  Optimization in operations research , 1997 .

[11]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[12]  Ruhul A. Sarker,et al.  An agent-based memetic algorithm (AMA) for solving constrained optimazation problems , 2007, 2007 IEEE Congress on Evolutionary Computation.

[13]  William E. Hart,et al.  Recent Advances in Memetic Algorithms , 2008 .

[14]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[15]  John H. Holland,et al.  Outline for a Logical Theory of Adaptive Systems , 1962, JACM.

[16]  Ender Özcan,et al.  An Experimental Study on Hyper-heuristics and Exam Timetabling , 2006, PATAT.

[17]  Bruce A. Robinson,et al.  Self-Adaptive Multimethod Search for Global Optimization in Real-Parameter Spaces , 2009, IEEE Transactions on Evolutionary Computation.

[18]  A. Kai Qin,et al.  Self-adaptive differential evolution algorithm for numerical optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.