DIAGONAL PAD ] APPROXIMATIONS FOR INITIAL VALUE PROBLEMS *

Diagonal Padd approximations to the time evolution operator for initial value problems are applied in a novel way to the numerical solution of these problems by explicitly factoring the polynomials of the approximation. A remarkable gain over conventional methods in efficiency and accuracy of solution is obtained.

[1]  R. Varga On Higher Order Stable Implicit Methods for Solving Parabolic Partial Differential Equations , 1961 .

[2]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[3]  Richard Bellman,et al.  On Some Questions Arising in the Approximate Solution of Nonlinear Differential Equations , 1963 .

[4]  Richard S. Varga,et al.  DISCRETIZATION ERRORS FOR WELL-SET CAUCHY PROBLEMS.I., , 1965 .

[5]  B. L. Ehle A-Stable Methods and Padé Approximations to the Exponential , 1973 .

[6]  Richard S. Varga,et al.  On the zeros and poles of Padé approximants toez , 1975 .

[7]  R. Varga,et al.  Geometric convergence to e−z by rational functions with real poles , 1975 .

[8]  Robert G. Voigt,et al.  The Solution of Tridiagonal Linear Systems on the CDC STAR 100 Computer , 1975, TOMS.

[9]  Harold S. Stone,et al.  Parallel Tridiagonal Equation Solvers , 1975, TOMS.

[10]  M. Abramowitz,et al.  Mathematical functions and their approximations , 1975 .

[11]  S. Orszag,et al.  Advanced Mathematical Methods For Scientists And Engineers , 1979 .

[12]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[13]  Willi-Hans Steeb,et al.  Non-linear autonomous systems of differential equations and Carleman linearization procedure , 1980 .

[14]  Roberto F. S. Andrade,et al.  The Lorenz model and the method of Carleman embedding , 1981 .

[15]  G. Marchuk Methods of Numerical Mathematics , 1982 .

[16]  J. Kraaijevanger,et al.  Absolute monotonicity of rational functions occurring in the numerical solution of initial value problems , 1986 .