Schrödinger operators with dynamically defined potentials
暂无分享,去创建一个
[1] H. Furstenberg. Noncommuting random products , 1963 .
[2] Localization of eigenstates and transport phenomena in the one-dimensional disordered system , 1972 .
[3] D. Ruelle. Ergodic theory of differentiable dynamical systems , 1979 .
[4] Hervé Kunz,et al. Sur le spectre des opérateurs aux différences finies aléatoires , 1980 .
[5] L. Pastur. Spectral properties of disordered systems in the one-body approximation , 1980 .
[6] B. Simon,et al. Almost periodic Schrödinger operators , 1981 .
[7] P. Deift,et al. Almost periodic Schrödinger operators , 1983 .
[8] V. A. Chulaevskiĭ. COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: On perturbations of a Schrödinger operator with periodic potential , 1981 .
[9] B. Simon. Almost periodic Schrödinger operators: A Review , 1982 .
[10] B. Simon,et al. Cantor spectrum for the almost Mathieu equation , 1982 .
[11] Chao Tang,et al. Localization Problem in One Dimension: Mapping and Escape , 1983 .
[12] David A. Rand,et al. One-dimensional schrodinger equation with an almost periodic potential , 1983 .
[13] W. Craig. Pure point spectrum for discrete almost periodic Schrödinger operators , 1983 .
[14] M. R. Herman. Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2 , 1983 .
[15] Barry Simon,et al. Subharmonicity of the Lyaponov index , 1983 .
[16] J. Fröhlich,et al. Absence of diffusion in the Anderson tight binding model for large disorder or low energy , 1983 .
[17] B. Simon,et al. Almost periodic Schrödinger operators II. The integrated density of states , 1983 .
[18] S. Kotani. Ljapunov Indices Determine Absolutely Continuous Spectra of Stationary Random One-dimensional Schrödinger Operators , 1984 .
[19] S. Molchanov,et al. Structure of the spectrum of a lacunary-limit-periodic Schrödinger operator , 1984 .
[20] Strongly Discontinuous Semigroups. EXPONENTIAL DICHOTOMY OF , 1984 .
[21] F. Delyon,et al. Remark on the continuity of the density of states of ergodic finite difference operators , 1984 .
[22] J. Cahn,et al. Metallic Phase with Long-Range Orientational Order and No Translational Symmetry , 1984 .
[23] E. L. Page. Repartition d'etat d'un operateur de Schrödinger aleatoire Distribution empirique des valeurs propres d'une matrice de Jacobi , 1984 .
[24] P. Bougerol,et al. Ergodic Schrödinger Operators , 1985 .
[25] Support theorems for random Schrödinger operators , 1985 .
[26] Russell Johnson. Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients , 1986 .
[27] B. Simon,et al. Singular continuous spectrum under rank one perturbations and localization for random hamiltonians , 1986 .
[28] Dimitri Petritis,et al. Absence of localization in a class of Schrödinger operators with quasiperiodic potential , 1986 .
[29] M. Casdagli. Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation , 1986 .
[30] D. Pearson,et al. On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators , 1987 .
[31] Y. Sinai. Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential , 1987 .
[32] René Carmona,et al. Anderson localization for Bernoulli and other singular potentials , 1987 .
[33] András Sütő,et al. The spectrum of a quasiperiodic Schrödinger operator , 1987 .
[34] D. Gilbert. On subordinacy and analysis of the spectrum of Schrödinger operators with two singular endpoints , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[35] András Sütő,et al. Singular continuous spectrum on a cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian , 1989 .
[36] Jean Bellissard,et al. Spectral properties of one dimensional quasi-crystals , 1989 .
[37] B. Helffer,et al. Semi-classical analysis for Harper's equation. III : Cantor structure of the spectrum , 1989 .
[38] JACOBI MATRICES WITH RANDOM POTENTIALS TAKING FINITELY MANY VALUES , 1989 .
[39] A. Klein,et al. A new proof of localization in the Anderson tight binding model , 1989 .
[40] I. Guarneri. Spectral Properties of Quantum Diffusion on Discrete Lattices , 1989 .
[41] T. Spencer,et al. Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials , 1991 .
[42] B. Simon. Absence of ballistic motion , 1990 .
[43] Man-Duen Choi,et al. Gauss polynomials and the rotation algebra , 1990 .
[44] J. Fröhlich,et al. Localization for a class of one dimensional quasi-periodic Schrödinger operators , 1990 .
[45] B. Simon,et al. On the measure of the spectrum for the almost Mathieu operator , 1990 .
[46] J. Bellissard. Spectral Properties of Schrödinger’s Operator with a Thue-Morse Potential , 1990 .
[47] François Delyon,et al. Recurrence of the eigenstates of a Schrödinger operator with automatic potential , 1991 .
[48] H. Behncke. Absolute continuity of Hamiltonians with von Neumann-Wigner potentials , 1991 .
[49] H. Behncke. Absolute continuity of hamiltonians with von Neumann Wigner potentials II , 1991 .
[50] B. Iochum,et al. Power law growth for the resistance in the Fibonacci model , 1991 .
[51] Anton Bovier,et al. Spectral properties of a tight binding Hamiltonian with period doubling potential , 1991 .
[52] L. H. Eliasson,et al. Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation , 1992 .
[53] Vilmos Totik,et al. General Orthogonal Polynomials , 1992 .
[54] L. Raymond,et al. Resistance of one-dimensional quasicrystals , 1992 .
[55] G. Stolz. Bounded solutions and absolute continuity of Sturm-Liouville operators , 1992 .
[56] J. Combes. Connections Between Quantum Dynamics and Spectral Properties of Time-Evolution Operators , 1993 .
[57] A. Volberg. On the dimension of harmonic measure of Cantor repellers. , 1993 .
[58] Anton Bovier,et al. Spectral properties of one-dimensional Schrödinger operators with potentials generated by substitutions , 1993 .
[59] Y. Last. A relation between a.c. spectrum of ergodic Jacobi matrices and the spectra of periodic approximants , 1993 .
[60] B. Simon,et al. Operators with singular continuous spectrum: III. Almost periodic Schrödinger operators , 1994 .
[61] S. Jitomirskaya. Anderson localization for the almost Mathieu equation: A nonperturbative proof , 1994 .
[62] M. Boshernitzan. Uniform distribution and Hardy fields , 1994 .
[63] A. V. Elst. GAP-LABELLING THEOREMS FOR SCHRÖDINGER OPERATORS ON THE SQUARE AND CUBIC LATTICE , 1994 .
[64] Y. Last. Zero measure spectrum for the almost Mathieu operator , 1994 .
[65] S. Jitomirskaya. Anderson localization for the almost Mathieu equation: II. Point spectrum for λ>2 , 1995 .
[66] Barry Simon,et al. Singular continuous spectrum for palindromic Schrödinger operators , 1995 .
[67] Barry Simon,et al. Spectral analysis of rank one perturbations and applications , 1995 .
[68] Y. Last. Quantum Dynamics and Decompositions of Singular Continuous Spectra , 1995 .
[69] Haifa,et al. Almost Everything about the Almost Mathieu Operator I* , 1995 .
[70] B. Simon. Bounded eigenfunctions and absolutely continuous spectra for one-dimensional Schrödinger operators , 1996 .
[71] B. Simon,et al. Operators with singular continuous spectrum, IV. Hausdorff dimensions, rank one perturbations, and localization , 1996 .
[72] Absence of point spectrum for a class of discrete Schrödinger operators with quasiperiodic potential , 1996 .
[73] B. Simon,et al. Duality and singular continuous spectrum in the almost Mathieu equation , 1997 .
[74] L. Eliasson. Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum , 1997 .
[75] S. Kotani. Generalized Floquet theory for stationary Schrödinger operators in one dimension , 1997 .
[76] S. Jitomirskaya. Continuous Spectrum and Uniform Localization for Ergodic Schrödinger Operators , 1997 .
[77] David Damanik,et al. Singular Continuous Spectrum for the Period Doubling Hamiltonian on a Set of Full Measure , 1998 .
[78] David Damanik. Singular Continuous Spectrum for a Class of Substitution Hamiltonians , 1998 .
[79] F. Germinet,et al. Dynamical Localization for Discrete and Continuous Random Schrr Odinger Operators , 1997 .
[80] S. Jitomirskaya,et al. Anderson Localization for the Almost Mathieu Equation, III. Semi-Uniform Localization, Continuity of Gaps, and Measure of the Spectrum , 1998 .
[81] David Damanik,et al. α-Continuity Properties of One-Dimensional Quasicrystals , 1998 .
[82] N. Makarov. FINE STRUCTURE OF HARMONIC MEASURE , 1998 .
[83] Svetlana Ya. Jitomirskaya. Metal-insulator transition for the almost Mathieu operator , 1999 .
[84] Tim Purdy. Power-law subordinacy and singular spectra I. Half-line operators , 1999 .
[85] S. Jitomirskaya,et al. Power-law subordinacy and singular spectra I. Half-line operators , 1999 .
[86] D. Damanik. Gordon-type arguments in the spectral theory of one-dimensional quasicrystals , 1999 .
[87] D. Damanik,et al. Uniform spectral properties of one-dimensional quasicrystals , 1999 .
[88] David Damanik,et al. Uniform Spectral Properties of One-Dimensional Quasicrystals, I. Absence of Eigenvalues , 1999 .
[89] Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators , 1999, math-ph/9907023.
[90] Dynamical Localization for the Random Dimer Schrödinger Operator , 1999, math-ph/9907006.
[91] F. Germinet,et al. Dynamical Localization for the Random Dimer , 1999 .
[92] P. Stollmann,et al. Multi-scale analysis implies strong dynamical localization , 1999, math-ph/9912002.
[93] Uniform Spectral Properties of One-Dimensional Quasicrystals, III. α-Continuity , 1999, math-ph/9910017.
[94] David Damanik,et al. Singular Continuous Spectrum for a Class of Substitution Hamiltonians II , 2000 .
[95] J. Bourgain,et al. Anderson localization for the band model , 2000 .
[96] B. Simon. SCHRODINGER OPERATORS IN THE TWENTY-FIRST CENTURY , 1986 .
[97] On nonperturbative localization with quasi-periodic potential , 2000, math-ph/0011053.
[98] S. Jitomirskaya,et al. Power Law Subordinacy and Singular Spectra.¶II. Line Operators , 2000 .
[99] J. Bourgain,et al. Anderson Localization for Schrödinger Operators on ℤ with Strongly Mixing Potentials , 2000 .
[100] J. Bourgain,et al. Anderson Localization for Schrödinger Operators on ℤ with Potentials Given by the Skew–Shift , 2001 .
[101] D. Damanik,et al. A Palindromic Half-Line Criterion for Absence of Eigenvalues and Applications to Substitution Hamiltonians , 2001 .
[102] Dynamical upper bounds on wavepacket spreading , 2001, math/0112078.
[103] A. Klein,et al. Bootstrap Multiscale Analysis and Localization¶in Random Media , 2001 .
[104] Continuity of the measure of the spectrum for discrete quasiperiodic operators , 2001, math/0107061.
[105] Michael Goldstein,et al. Holder continuity of the integrated density of states for quasi-periodic Schrodinger equations and averages of shifts of subharmonic functions , 2001 .
[106] C. Oliveira,et al. Singular continuous spectrum for a class of nonprimitive substitution Schrodinger operators , 2001 .
[107] D. Damanik. Uniform Singular Continuous Spectrum for the Period Doubling Hamiltonian , 2001 .
[108] J. Bourgain,et al. Continuity of the Lyapunov Exponent for Quasiperiodic Operators with Analytic Potential , 2001 .
[109] D. Damanik,et al. Uniform spectral properties of one-dimensional quasicrystals, iv. quasi-sturmian potentials , 2001, math-ph/0105034.
[110] OPERATORS WITH SINGULAR CONTINUOUS SPECTRUM : III , 2002 .
[111] Measure Zero Spectrum of a Class of Schrödinger Operators , 2002 .
[112] F. Klopp,et al. Anderson Transitions for a Family of Almost Periodic Schrödinger Equations in the Adiabatic Case , 2002 .
[113] Dynamical upper bounds for one-dimensional quasicrystals , 2002, math-ph/0203018.
[114] I. Guarneri,et al. Lower bounds on wave packet propagation by packing dimensions of spectral measures , 2002 .
[115] Singular Spectrum of Lebesgue Measure Zero¶for One-Dimensional Quasicrystals , 2001, math-ph/0106012.
[116] J. Bourgain,et al. Absolutely continuous spectrum for 1D quasiperiodic operators , 2002 .
[117] J. Bourgain. On the spectrum of lattice Schrödinger operators with deterministic potential , 2002 .
[118] J. Bourgain. On the spectrum of lattice schrödinger operators with deterministic potential (II) , 2002 .
[119] Delocalization in Random Polymer Models , 2003, math-ph/0405024.
[120] Artur Avila,et al. Reducibility or nonuniform hyperbolicity for quasiperiodic Schrodinger cocycles , 2003 .
[121] D. Damanik,et al. Power-Law Bounds on Transfer Matrices and Quantum Dynamics in One Dimension , 2002, math-ph/0206025.
[122] Anderson localization for the discrete one-dimensional quasi-periodic Schrödinger operator with potential defined by a Gevrey-class function , 2003, math-ph/0312073.
[123] C. R. de Oliveira,et al. Uniform Cantor Singular Continuous Spectrum for Nonprimitive Schrödinger Operators , 2003 .
[124] Ergodic potentials with a discontinuous sampling function are non-deterministic , 2004, math-ph/0402070.
[125] Z. Wen,et al. Hausdorff Dimension of Spectrum of One-Dimensional Schrödinger Operator with Sturmian Potentials , 2004 .
[126] D. Damanik,et al. A condition of Boshernitzan and uniform convergence in the multiplicative ergodic theorem , 2004, math/0403190.
[127] Scaling estimates for solutions and dynamical lower bounds on wavepacket spreading , 2004, math-ph/0407017.
[128] Joaquim Puig. Cantor Spectrum for the Almost Mathieu Operator , 2004 .
[129] Jean Bourgain,et al. Green's Function Estimates for Lattice Schrödinger Operators and Applications. , 2004 .
[130] D. Damanik,et al. Generic Singular Spectrum For Ergodic Schrödinger Operators , 2005 .
[131] J. Bourgain. Positivity and continuity of the Lyapounov exponent for shifts on Td with arbitrary frequency vector and real analytic potentiald with arbitrary frequency vector and real analytic potential , 2005 .
[132] Upper bounds in quantum dynamics , 2005, math-ph/0502044.
[133] D. Damanik. Strictly Ergodic Subshifts and Associated Operators , 2005, math/0509197.
[134] Kristian Bjerklöv. Positive Lyapunov exponent and minimality for a class of one-dimensional quasi-periodic Schrödinger equations , 2005, Ergodic Theory and Dynamical Systems.
[135] On resonances and the formation of gaps in the spectrum of quasi-periodic Schrodinger equations , 2005, math/0511392.
[136] Almost Everywhere Positivity of the Lyapunov Exponent for the Doubling Map , 2004, math-ph/0405061.
[137] Kristian Bjerklöv. Explicit examples of arbitrarily large analytic ergodic potentials with zero Lyapunov exponent , 2006 .
[138] D. Damanik,et al. Zero-measure Cantor spectrum for Schrödinger operators with low-complexity potentials , 2006 .
[139] Zhenghe Zhang. LYAPUNOV EXPONENTS AND SPECTRAL ANALYSIS OF ERGODIC SCHRÖDINGER OPERATORS: A SURVEY OF KOTANI THEORY AND ITS APPLICATIONS , 2006 .
[140] S. Jitomirskaya,et al. Upper Bounds On Wavepacket Spreading For Random Jacobi Matrices , 2006, math-ph/0607029.
[141] S. Jitomirskaya. Ergodic Schrödinger Operators (on one foot) , 2007 .
[142] C. Remling. The absolutely continuous spectrum of Jacobi matrices , 2007, 0706.1101.
[143] B. Simon. EQUILIBRIUM MEASURES AND CAPACITIES IN SPECTRAL THEORY , 2007, 0711.2700.
[144] Z. Wen,et al. Dimension of the spectrum of one-dimensional discrete Schrödinger operators with Sturmian potentials , 2007 .
[145] Serge Cantat. Bers and H\'enon, Painlev\'e and Schroedinger , 2007, 0711.1727.
[146] D. Damanik,et al. Cantor Spectrum for Schr\"odinger Operators with Potentials arising from Generalized Skew-shifts , 2007, 0709.2667.
[147] D. Damanik,et al. Hyperbolicity of the trace map for the weakly coupled Fibonacci Hamiltonian , 2008, 0806.0645.
[148] D. Damanik,et al. Generic Continuous Spectrum for Ergodic Schrödinger Operators , 2007, 0708.1263.
[149] D. Damanik,et al. Absolute continuity of the integrated density of states for the almost Mathieu operator with non-critical coupling , 2007, 0711.4291.
[150] D. Damanik,et al. Quantum Dynamics via Complex Analysis Methods: General Upper Bounds Without Time-Averaging and Tight Lower Bounds for the Strongly Coupled Fibonacci Hamiltonian , 2008, 0801.3399.
[151] M. Embree,et al. The Fractal Dimension of the Spectrum of the Fibonacci Hamiltonian , 2007, 0705.0338.
[152] H. Krüger. A Family of Schrödinger Operators Whose Spectrum is an Interval , 2008, 0809.3434.
[153] Dynamical Bounds for Sturmian Schrödinger Operators , 2008 .
[154] Sol Schwartzman,et al. Asymptotic cycles , 2008, Scholarpedia.
[155] A. Avila. The absolutely continuous spectrum of the almost Mathieu operator , 2008, 0810.2965.
[156] A. Avila,et al. Almost localization and almost reducibility , 2008, 0805.1761.
[157] D. Damanik,et al. Limit-Periodic Schr\"odinger Operators in the Regime of Positive Lyapunov Exponents , 2009, 0906.3340.
[158] D. Damanik,et al. Spectral Properties of Limit-Periodic Schr\"odinger Operators (PhD Thesis) , 2009, 1205.6686.
[159] Optimality of log Hölder continuity of the integrated density of states , 2009, 0906.3300.
[160] A. Avila,et al. The Ten Martini Problem , 2009 .
[161] A. Avila. Global theory of one-frequency Schrodinger operators I: stratified analyticity of the Lyapunov exponent and the boundary of nonuniform hyperbolicity , 2009, 0905.3902.
[162] Y. Last,et al. Eigenvalue spacings and dynamical upper bounds for discrete one-dimensional Schrödinger operators , 2009, 0911.1671.
[163] A. Avila. On the Spectrum and Lyapunov Exponent of Limit Periodic Schrödinger Operators , 2008, 0807.4339.
[164] D. Damanik,et al. Opening gaps in the spectrum of strictly ergodic , 2009, 0903.2281.
[165] Sana Hadj Amor. Hölder Continuity of the Rotation Number for Quasi-Periodic Co-Cycles in $${SL(2, \mathbb R)}$$ , 2009 .
[166] R. Fabbri,et al. On the Lyapunov exponent of certain SL(2,ℝ)-valued cocycles II , 2010 .
[167] D. Damanik,et al. A general description of quantum dynamical spreading over an orthonormal basis and applicationsto Schrödinger operators , 2010 .
[168] A. Avila. Almost reducibility and absolute continuity I , 2010, 1006.0704.
[169] D. Damanik,et al. Limit-periodic Schrödinger operators with uniformly localized eigenfunctions , 2010, 1003.1695.
[170] Z. Gan. An Exposition of the Connection between Limit-Periodic Potentials and Profinite Groups , 2010, 1001.1748.
[171] S. Jitomirskaya,et al. Analytic Quasi-Perodic Cocycles with Singularities and the Lyapunov Exponent of Extended Harper’s Model , 2010 .
[172] On SL(2,R) valued cocycles of hölder class with zero exponent over kronecker flows , 2010 .
[173] D. Damanik,et al. Spectral and Quantum Dynamical Properties of the Weakly Coupled Fibonacci Hamiltonian , 2010, 1001.2552.
[174] Z. Wen,et al. Gibbs-like measure for spectrum of a class of quasi-crystals , 2011, Ergodic Theory and Dynamical Systems.
[175] Uniform Convergence of Schrödinger Cocycles over Simple Toeplitz Subshift , 2011 .
[176] Qinghui Liu,et al. Uniform Convergence of Schrödinger Cocycles over Bounded Toeplitz Subshift , 2011 .
[177] D. Damanik,et al. Hölder Continuity of the Integrated Density of States for the Fibonacci Hamiltonian , 2012, 1206.5561.
[178] S. Jitomirskaya,et al. Analytic quasi-periodic Schrödinger operators and rational frequency approximants , 2012, 1201.4199.
[179] P. Yuditskii,et al. Kotani–Last problem and Hardy spaces on surfaces of Widom type , 2012, 1210.7069.
[180] Exponential Dynamical Localization for the Almost Mathieu Operator , 2012, 1208.2674.
[181] H. Krüger. Concentration of Eigenvalues for Skew-Shift Schrödinger Operators , 2012 .
[182] A. Avila. On the Kotani-Last and Schrodinger conjectures , 2012, 1210.6325.
[183] H. Krüger. An explicit skew-shift Schr\"odinger operator with positive Lyapunov exponent at small coupling , 2012 .
[184] D. Damanik,et al. The Density of States Measure of the Weakly Coupled Fibonacci Hamiltonian , 2012, 1206.5560.
[185] H. Krüger. The spectrum of skew-shift Schrödinger operators contains intervals , 2012 .
[186] Yiqian Wang,et al. Uniform Positivity and Continuity of Lyapunov Exponents for a Class of $C^2$ Quasiperiodic Schrödinger Cocycles , 2013, 1311.4282.
[187] P. Munger. Frequency dependence of H\"older continuity for quasiperiodic Schr\"odinger operators , 2013, 1310.8553.
[188] D. Damanik,et al. Almost ballistic transport for the weakly coupled Fibonacci Hamiltonian , 2013, 1307.0925.
[189] D. Damanik,et al. Singular Density of States Measure for Subshift and Quasi-Periodic Schrödinger Operators , 2013, 1304.0519.
[190] P. Yuditskii,et al. Counterexamples to the Kotani-Last Conjecture for Continuum Schr\"odinger Operators via Character-Automorphic Hardy Spaces , 2014, 1405.6343.
[191] J. Fillman. Spectral Homogeneity of Discrete One-Dimensional Limit-Periodic Operators , 2014, 1409.7734.
[192] May Mei. Spectra of discrete Schrödinger operators with primitive invertible substitution potentials , 2013, 1311.0954.
[193] S. Jitomirskaya,et al. Continuity of the Measure of the Spectrum for Quasiperiodic Schrödinger Operators with Rough Potentials , 2012, 1208.3991.
[194] Yiqian Wang,et al. Cantor spectrum for a class of $C^2$ quasiperiodic Schr\"odinger operators , 2014, 1410.0101.
[195] D. Damanik,et al. Quantum Dynamics of Periodic and Limit-Periodic Jacobi and Block Jacobi Matrices with Applications to Some Quantum Many Body Problems , 2014, 1407.5067.
[196] A. Girand. Dynamical Green functions and discrete Schrödinger operators with potentials generated by primitive invertible substitution , 2013, 1309.5714.
[197] Z. Wen,et al. The fractal dimensions of the spectrum of Sturm Hamiltonian , 2013, 1310.1473.
[198] THE SPECTRAL PROPERTIES OF THE STRONGLY COUPLED STURM HAMILTONIAN OF CONSTANT TYPE , 2014 .
[199] Uniform localization is always uniform , 2015, 1607.08566.
[200] Imperfectly grown periodic medium: absence of localized states , 2015 .
[201] M. Embree,et al. Spectral properties of Schrödinger operators arising in the study of quasicrystals , 2012, 1210.5753.
[202] J. You,et al. Simple Counter-Examples to Kotani–Last Conjecture Via Reducibility , 2015 .
[203] A. Avila. Global theory of one-frequency Schrödinger operators , 2015 .
[204] D. Damanik,et al. The Fibonacci Hamiltonian , 2014, 1403.7823.
[205] The Spectral Properties of the Strongly Coupled Sturm Hamiltonian of Eventually Constant Type , 2014, 1404.3344.
[206] S. Jitomirskaya,et al. Dynamics and spectral theory of quasi-periodic Schrödinger-type operators , 2015, Ergodic Theory and Dynamical Systems.
[207] Gorjan Alagic,et al. #p , 2019, Quantum information & computation.
[208] P. Munger. Frequency dependence of Hölder continuity for quasiperiodic Schrödinger operators , 2018, Journal of Fractal Geometry.