Schrödinger operators with dynamically defined potentials

In this survey we discuss spectral and quantum dynamical properties of discrete one-dimensional Schrödinger operators whose potentials are obtained by real-valued sampling along the orbits of an ergodic invertible transformation. After an introductory part explaining basic spectral concepts and fundamental results, we present the general theory of such operators, and then provide an overview of known results for specific classes of potentials. Here we focus primarily on the cases of random and almost periodic potentials.

[1]  H. Furstenberg Noncommuting random products , 1963 .

[2]  Localization of eigenstates and transport phenomena in the one-dimensional disordered system , 1972 .

[3]  D. Ruelle Ergodic theory of differentiable dynamical systems , 1979 .

[4]  Hervé Kunz,et al.  Sur le spectre des opérateurs aux différences finies aléatoires , 1980 .

[5]  L. Pastur Spectral properties of disordered systems in the one-body approximation , 1980 .

[6]  B. Simon,et al.  Almost periodic Schrödinger operators , 1981 .

[7]  P. Deift,et al.  Almost periodic Schrödinger operators , 1983 .

[8]  V. A. Chulaevskiĭ COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: On perturbations of a Schrödinger operator with periodic potential , 1981 .

[9]  B. Simon Almost periodic Schrödinger operators: A Review , 1982 .

[10]  B. Simon,et al.  Cantor spectrum for the almost Mathieu equation , 1982 .

[11]  Chao Tang,et al.  Localization Problem in One Dimension: Mapping and Escape , 1983 .

[12]  David A. Rand,et al.  One-dimensional schrodinger equation with an almost periodic potential , 1983 .

[13]  W. Craig Pure point spectrum for discrete almost periodic Schrödinger operators , 1983 .

[14]  M. R. Herman Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2 , 1983 .

[15]  Barry Simon,et al.  Subharmonicity of the Lyaponov index , 1983 .

[16]  J. Fröhlich,et al.  Absence of diffusion in the Anderson tight binding model for large disorder or low energy , 1983 .

[17]  B. Simon,et al.  Almost periodic Schrödinger operators II. The integrated density of states , 1983 .

[18]  S. Kotani Ljapunov Indices Determine Absolutely Continuous Spectra of Stationary Random One-dimensional Schrödinger Operators , 1984 .

[19]  S. Molchanov,et al.  Structure of the spectrum of a lacunary-limit-periodic Schrödinger operator , 1984 .

[20]  Strongly Discontinuous Semigroups EXPONENTIAL DICHOTOMY OF , 1984 .

[21]  F. Delyon,et al.  Remark on the continuity of the density of states of ergodic finite difference operators , 1984 .

[22]  J. Cahn,et al.  Metallic Phase with Long-Range Orientational Order and No Translational Symmetry , 1984 .

[23]  E. L. Page Repartition d'etat d'un operateur de Schrödinger aleatoire Distribution empirique des valeurs propres d'une matrice de Jacobi , 1984 .

[24]  P. Bougerol,et al.  Ergodic Schrödinger Operators , 1985 .

[25]  Support theorems for random Schrödinger operators , 1985 .

[26]  Russell Johnson Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients , 1986 .

[27]  B. Simon,et al.  Singular continuous spectrum under rank one perturbations and localization for random hamiltonians , 1986 .

[28]  Dimitri Petritis,et al.  Absence of localization in a class of Schrödinger operators with quasiperiodic potential , 1986 .

[29]  M. Casdagli Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation , 1986 .

[30]  D. Pearson,et al.  On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators , 1987 .

[31]  Y. Sinai Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential , 1987 .

[32]  René Carmona,et al.  Anderson localization for Bernoulli and other singular potentials , 1987 .

[33]  András Sütő,et al.  The spectrum of a quasiperiodic Schrödinger operator , 1987 .

[34]  D. Gilbert On subordinacy and analysis of the spectrum of Schrödinger operators with two singular endpoints , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[35]  András Sütő,et al.  Singular continuous spectrum on a cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian , 1989 .

[36]  Jean Bellissard,et al.  Spectral properties of one dimensional quasi-crystals , 1989 .

[37]  B. Helffer,et al.  Semi-classical analysis for Harper's equation. III : Cantor structure of the spectrum , 1989 .

[38]  JACOBI MATRICES WITH RANDOM POTENTIALS TAKING FINITELY MANY VALUES , 1989 .

[39]  A. Klein,et al.  A new proof of localization in the Anderson tight binding model , 1989 .

[40]  I. Guarneri Spectral Properties of Quantum Diffusion on Discrete Lattices , 1989 .

[41]  T. Spencer,et al.  Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials , 1991 .

[42]  B. Simon Absence of ballistic motion , 1990 .

[43]  Man-Duen Choi,et al.  Gauss polynomials and the rotation algebra , 1990 .

[44]  J. Fröhlich,et al.  Localization for a class of one dimensional quasi-periodic Schrödinger operators , 1990 .

[45]  B. Simon,et al.  On the measure of the spectrum for the almost Mathieu operator , 1990 .

[46]  J. Bellissard Spectral Properties of Schrödinger’s Operator with a Thue-Morse Potential , 1990 .

[47]  François Delyon,et al.  Recurrence of the eigenstates of a Schrödinger operator with automatic potential , 1991 .

[48]  H. Behncke Absolute continuity of Hamiltonians with von Neumann-Wigner potentials , 1991 .

[49]  H. Behncke Absolute continuity of hamiltonians with von Neumann Wigner potentials II , 1991 .

[50]  B. Iochum,et al.  Power law growth for the resistance in the Fibonacci model , 1991 .

[51]  Anton Bovier,et al.  Spectral properties of a tight binding Hamiltonian with period doubling potential , 1991 .

[52]  L. H. Eliasson,et al.  Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation , 1992 .

[53]  Vilmos Totik,et al.  General Orthogonal Polynomials , 1992 .

[54]  L. Raymond,et al.  Resistance of one-dimensional quasicrystals , 1992 .

[55]  G. Stolz Bounded solutions and absolute continuity of Sturm-Liouville operators , 1992 .

[56]  J. Combes Connections Between Quantum Dynamics and Spectral Properties of Time-Evolution Operators , 1993 .

[57]  A. Volberg On the dimension of harmonic measure of Cantor repellers. , 1993 .

[58]  Anton Bovier,et al.  Spectral properties of one-dimensional Schrödinger operators with potentials generated by substitutions , 1993 .

[59]  Y. Last A relation between a.c. spectrum of ergodic Jacobi matrices and the spectra of periodic approximants , 1993 .

[60]  B. Simon,et al.  Operators with singular continuous spectrum: III. Almost periodic Schrödinger operators , 1994 .

[61]  S. Jitomirskaya Anderson localization for the almost Mathieu equation: A nonperturbative proof , 1994 .

[62]  M. Boshernitzan Uniform distribution and Hardy fields , 1994 .

[63]  A. V. Elst GAP-LABELLING THEOREMS FOR SCHRÖDINGER OPERATORS ON THE SQUARE AND CUBIC LATTICE , 1994 .

[64]  Y. Last Zero measure spectrum for the almost Mathieu operator , 1994 .

[65]  S. Jitomirskaya Anderson localization for the almost Mathieu equation: II. Point spectrum for λ>2 , 1995 .

[66]  Barry Simon,et al.  Singular continuous spectrum for palindromic Schrödinger operators , 1995 .

[67]  Barry Simon,et al.  Spectral analysis of rank one perturbations and applications , 1995 .

[68]  Y. Last Quantum Dynamics and Decompositions of Singular Continuous Spectra , 1995 .

[69]  Haifa,et al.  Almost Everything about the Almost Mathieu Operator I* , 1995 .

[70]  B. Simon Bounded eigenfunctions and absolutely continuous spectra for one-dimensional Schrödinger operators , 1996 .

[71]  B. Simon,et al.  Operators with singular continuous spectrum, IV. Hausdorff dimensions, rank one perturbations, and localization , 1996 .

[72]  Absence of point spectrum for a class of discrete Schrödinger operators with quasiperiodic potential , 1996 .

[73]  B. Simon,et al.  Duality and singular continuous spectrum in the almost Mathieu equation , 1997 .

[74]  L. Eliasson Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum , 1997 .

[75]  S. Kotani Generalized Floquet theory for stationary Schrödinger operators in one dimension , 1997 .

[76]  S. Jitomirskaya Continuous Spectrum and Uniform Localization for Ergodic Schrödinger Operators , 1997 .

[77]  David Damanik,et al.  Singular Continuous Spectrum for the Period Doubling Hamiltonian on a Set of Full Measure , 1998 .

[78]  David Damanik Singular Continuous Spectrum for a Class of Substitution Hamiltonians , 1998 .

[79]  F. Germinet,et al.  Dynamical Localization for Discrete and Continuous Random Schrr Odinger Operators , 1997 .

[80]  S. Jitomirskaya,et al.  Anderson Localization for the Almost Mathieu Equation, III. Semi-Uniform Localization, Continuity of Gaps, and Measure of the Spectrum , 1998 .

[81]  David Damanik,et al.  α-Continuity Properties of One-Dimensional Quasicrystals , 1998 .

[82]  N. Makarov FINE STRUCTURE OF HARMONIC MEASURE , 1998 .

[83]  Svetlana Ya. Jitomirskaya Metal-insulator transition for the almost Mathieu operator , 1999 .

[84]  Tim Purdy Power-law subordinacy and singular spectra I. Half-line operators , 1999 .

[85]  S. Jitomirskaya,et al.  Power-law subordinacy and singular spectra I. Half-line operators , 1999 .

[86]  D. Damanik Gordon-type arguments in the spectral theory of one-dimensional quasicrystals , 1999 .

[87]  D. Damanik,et al.  Uniform spectral properties of one-dimensional quasicrystals , 1999 .

[88]  David Damanik,et al.  Uniform Spectral Properties of One-Dimensional Quasicrystals, I. Absence of Eigenvalues , 1999 .

[89]  Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators , 1999, math-ph/9907023.

[90]  Dynamical Localization for the Random Dimer Schrödinger Operator , 1999, math-ph/9907006.

[91]  F. Germinet,et al.  Dynamical Localization for the Random Dimer , 1999 .

[92]  P. Stollmann,et al.  Multi-scale analysis implies strong dynamical localization , 1999, math-ph/9912002.

[93]  Uniform Spectral Properties of One-Dimensional Quasicrystals, III. α-Continuity , 1999, math-ph/9910017.

[94]  David Damanik,et al.  Singular Continuous Spectrum for a Class of Substitution Hamiltonians II , 2000 .

[95]  J. Bourgain,et al.  Anderson localization for the band model , 2000 .

[96]  B. Simon SCHRODINGER OPERATORS IN THE TWENTY-FIRST CENTURY , 1986 .

[97]  On nonperturbative localization with quasi-periodic potential , 2000, math-ph/0011053.

[98]  S. Jitomirskaya,et al.  Power Law Subordinacy and Singular Spectra.¶II. Line Operators , 2000 .

[99]  J. Bourgain,et al.  Anderson Localization for Schrödinger Operators on ℤ with Strongly Mixing Potentials , 2000 .

[100]  J. Bourgain,et al.  Anderson Localization for Schrödinger Operators on ℤ with Potentials Given by the Skew–Shift , 2001 .

[101]  D. Damanik,et al.  A Palindromic Half-Line Criterion for Absence of Eigenvalues and Applications to Substitution Hamiltonians , 2001 .

[102]  Dynamical upper bounds on wavepacket spreading , 2001, math/0112078.

[103]  A. Klein,et al.  Bootstrap Multiscale Analysis and Localization¶in Random Media , 2001 .

[104]  Continuity of the measure of the spectrum for discrete quasiperiodic operators , 2001, math/0107061.

[105]  Michael Goldstein,et al.  Holder continuity of the integrated density of states for quasi-periodic Schrodinger equations and averages of shifts of subharmonic functions , 2001 .

[106]  C. Oliveira,et al.  Singular continuous spectrum for a class of nonprimitive substitution Schrodinger operators , 2001 .

[107]  D. Damanik Uniform Singular Continuous Spectrum for the Period Doubling Hamiltonian , 2001 .

[108]  J. Bourgain,et al.  Continuity of the Lyapunov Exponent for Quasiperiodic Operators with Analytic Potential , 2001 .

[109]  D. Damanik,et al.  Uniform spectral properties of one-dimensional quasicrystals, iv. quasi-sturmian potentials , 2001, math-ph/0105034.

[110]  OPERATORS WITH SINGULAR CONTINUOUS SPECTRUM : III , 2002 .

[111]  Measure Zero Spectrum of a Class of Schrödinger Operators , 2002 .

[112]  F. Klopp,et al.  Anderson Transitions for a Family of Almost Periodic Schrödinger Equations in the Adiabatic Case , 2002 .

[113]  Dynamical upper bounds for one-dimensional quasicrystals , 2002, math-ph/0203018.

[114]  I. Guarneri,et al.  Lower bounds on wave packet propagation by packing dimensions of spectral measures , 2002 .

[115]  Singular Spectrum of Lebesgue Measure Zero¶for One-Dimensional Quasicrystals , 2001, math-ph/0106012.

[116]  J. Bourgain,et al.  Absolutely continuous spectrum for 1D quasiperiodic operators , 2002 .

[117]  J. Bourgain On the spectrum of lattice Schrödinger operators with deterministic potential , 2002 .

[118]  J. Bourgain On the spectrum of lattice schrödinger operators with deterministic potential (II) , 2002 .

[119]  Delocalization in Random Polymer Models , 2003, math-ph/0405024.

[120]  Artur Avila,et al.  Reducibility or nonuniform hyperbolicity for quasiperiodic Schrodinger cocycles , 2003 .

[121]  D. Damanik,et al.  Power-Law Bounds on Transfer Matrices and Quantum Dynamics in One Dimension , 2002, math-ph/0206025.

[122]  Anderson localization for the discrete one-dimensional quasi-periodic Schrödinger operator with potential defined by a Gevrey-class function , 2003, math-ph/0312073.

[123]  C. R. de Oliveira,et al.  Uniform Cantor Singular Continuous Spectrum for Nonprimitive Schrödinger Operators , 2003 .

[124]  Ergodic potentials with a discontinuous sampling function are non-deterministic , 2004, math-ph/0402070.

[125]  Z. Wen,et al.  Hausdorff Dimension of Spectrum of One-Dimensional Schrödinger Operator with Sturmian Potentials , 2004 .

[126]  D. Damanik,et al.  A condition of Boshernitzan and uniform convergence in the multiplicative ergodic theorem , 2004, math/0403190.

[127]  Scaling estimates for solutions and dynamical lower bounds on wavepacket spreading , 2004, math-ph/0407017.

[128]  Joaquim Puig Cantor Spectrum for the Almost Mathieu Operator , 2004 .

[129]  Jean Bourgain,et al.  Green's Function Estimates for Lattice Schrödinger Operators and Applications. , 2004 .

[130]  D. Damanik,et al.  Generic Singular Spectrum For Ergodic Schrödinger Operators , 2005 .

[131]  J. Bourgain Positivity and continuity of the Lyapounov exponent for shifts on Td with arbitrary frequency vector and real analytic potentiald with arbitrary frequency vector and real analytic potential , 2005 .

[132]  Upper bounds in quantum dynamics , 2005, math-ph/0502044.

[133]  D. Damanik Strictly Ergodic Subshifts and Associated Operators , 2005, math/0509197.

[134]  Kristian Bjerklöv Positive Lyapunov exponent and minimality for a class of one-dimensional quasi-periodic Schrödinger equations , 2005, Ergodic Theory and Dynamical Systems.

[135]  On resonances and the formation of gaps in the spectrum of quasi-periodic Schrodinger equations , 2005, math/0511392.

[136]  Almost Everywhere Positivity of the Lyapunov Exponent for the Doubling Map , 2004, math-ph/0405061.

[137]  Kristian Bjerklöv Explicit examples of arbitrarily large analytic ergodic potentials with zero Lyapunov exponent , 2006 .

[138]  D. Damanik,et al.  Zero-measure Cantor spectrum for Schrödinger operators with low-complexity potentials , 2006 .

[139]  Zhenghe Zhang LYAPUNOV EXPONENTS AND SPECTRAL ANALYSIS OF ERGODIC SCHRÖDINGER OPERATORS: A SURVEY OF KOTANI THEORY AND ITS APPLICATIONS , 2006 .

[140]  S. Jitomirskaya,et al.  Upper Bounds On Wavepacket Spreading For Random Jacobi Matrices , 2006, math-ph/0607029.

[141]  S. Jitomirskaya Ergodic Schrödinger Operators (on one foot) , 2007 .

[142]  C. Remling The absolutely continuous spectrum of Jacobi matrices , 2007, 0706.1101.

[143]  B. Simon EQUILIBRIUM MEASURES AND CAPACITIES IN SPECTRAL THEORY , 2007, 0711.2700.

[144]  Z. Wen,et al.  Dimension of the spectrum of one-dimensional discrete Schrödinger operators with Sturmian potentials , 2007 .

[145]  Serge Cantat Bers and H\'enon, Painlev\'e and Schroedinger , 2007, 0711.1727.

[146]  D. Damanik,et al.  Cantor Spectrum for Schr\"odinger Operators with Potentials arising from Generalized Skew-shifts , 2007, 0709.2667.

[147]  D. Damanik,et al.  Hyperbolicity of the trace map for the weakly coupled Fibonacci Hamiltonian , 2008, 0806.0645.

[148]  D. Damanik,et al.  Generic Continuous Spectrum for Ergodic Schrödinger Operators , 2007, 0708.1263.

[149]  D. Damanik,et al.  Absolute continuity of the integrated density of states for the almost Mathieu operator with non-critical coupling , 2007, 0711.4291.

[150]  D. Damanik,et al.  Quantum Dynamics via Complex Analysis Methods: General Upper Bounds Without Time-Averaging and Tight Lower Bounds for the Strongly Coupled Fibonacci Hamiltonian , 2008, 0801.3399.

[151]  M. Embree,et al.  The Fractal Dimension of the Spectrum of the Fibonacci Hamiltonian , 2007, 0705.0338.

[152]  H. Krüger A Family of Schrödinger Operators Whose Spectrum is an Interval , 2008, 0809.3434.

[153]  Dynamical Bounds for Sturmian Schrödinger Operators , 2008 .

[154]  Sol Schwartzman,et al.  Asymptotic cycles , 2008, Scholarpedia.

[155]  A. Avila The absolutely continuous spectrum of the almost Mathieu operator , 2008, 0810.2965.

[156]  A. Avila,et al.  Almost localization and almost reducibility , 2008, 0805.1761.

[157]  D. Damanik,et al.  Limit-Periodic Schr\"odinger Operators in the Regime of Positive Lyapunov Exponents , 2009, 0906.3340.

[158]  D. Damanik,et al.  Spectral Properties of Limit-Periodic Schr\"odinger Operators (PhD Thesis) , 2009, 1205.6686.

[159]  Optimality of log Hölder continuity of the integrated density of states , 2009, 0906.3300.

[160]  A. Avila,et al.  The Ten Martini Problem , 2009 .

[161]  A. Avila Global theory of one-frequency Schrodinger operators I: stratified analyticity of the Lyapunov exponent and the boundary of nonuniform hyperbolicity , 2009, 0905.3902.

[162]  Y. Last,et al.  Eigenvalue spacings and dynamical upper bounds for discrete one-dimensional Schrödinger operators , 2009, 0911.1671.

[163]  A. Avila On the Spectrum and Lyapunov Exponent of Limit Periodic Schrödinger Operators , 2008, 0807.4339.

[164]  D. Damanik,et al.  Opening gaps in the spectrum of strictly ergodic , 2009, 0903.2281.

[165]  Sana Hadj Amor Hölder Continuity of the Rotation Number for Quasi-Periodic Co-Cycles in $${SL(2, \mathbb R)}$$ , 2009 .

[166]  R. Fabbri,et al.  On the Lyapunov exponent of certain SL(2,ℝ)-valued cocycles II , 2010 .

[167]  D. Damanik,et al.  A general description of quantum dynamical spreading over an orthonormal basis and applicationsto Schrödinger operators , 2010 .

[168]  A. Avila Almost reducibility and absolute continuity I , 2010, 1006.0704.

[169]  D. Damanik,et al.  Limit-periodic Schrödinger operators with uniformly localized eigenfunctions , 2010, 1003.1695.

[170]  Z. Gan An Exposition of the Connection between Limit-Periodic Potentials and Profinite Groups , 2010, 1001.1748.

[171]  S. Jitomirskaya,et al.  Analytic Quasi-Perodic Cocycles with Singularities and the Lyapunov Exponent of Extended Harper’s Model , 2010 .

[172]  On SL(2,R) valued cocycles of hölder class with zero exponent over kronecker flows , 2010 .

[173]  D. Damanik,et al.  Spectral and Quantum Dynamical Properties of the Weakly Coupled Fibonacci Hamiltonian , 2010, 1001.2552.

[174]  Z. Wen,et al.  Gibbs-like measure for spectrum of a class of quasi-crystals , 2011, Ergodic Theory and Dynamical Systems.

[175]  Uniform Convergence of Schrödinger Cocycles over Simple Toeplitz Subshift , 2011 .

[176]  Qinghui Liu,et al.  Uniform Convergence of Schrödinger Cocycles over Bounded Toeplitz Subshift , 2011 .

[177]  D. Damanik,et al.  Hölder Continuity of the Integrated Density of States for the Fibonacci Hamiltonian , 2012, 1206.5561.

[178]  S. Jitomirskaya,et al.  Analytic quasi-periodic Schrödinger operators and rational frequency approximants , 2012, 1201.4199.

[179]  P. Yuditskii,et al.  Kotani–Last problem and Hardy spaces on surfaces of Widom type , 2012, 1210.7069.

[180]  Exponential Dynamical Localization for the Almost Mathieu Operator , 2012, 1208.2674.

[181]  H. Krüger Concentration of Eigenvalues for Skew-Shift Schrödinger Operators , 2012 .

[182]  A. Avila On the Kotani-Last and Schrodinger conjectures , 2012, 1210.6325.

[183]  H. Krüger An explicit skew-shift Schr\"odinger operator with positive Lyapunov exponent at small coupling , 2012 .

[184]  D. Damanik,et al.  The Density of States Measure of the Weakly Coupled Fibonacci Hamiltonian , 2012, 1206.5560.

[185]  H. Krüger The spectrum of skew-shift Schrödinger operators contains intervals , 2012 .

[186]  Yiqian Wang,et al.  Uniform Positivity and Continuity of Lyapunov Exponents for a Class of $C^2$ Quasiperiodic Schrödinger Cocycles , 2013, 1311.4282.

[187]  P. Munger Frequency dependence of H\"older continuity for quasiperiodic Schr\"odinger operators , 2013, 1310.8553.

[188]  D. Damanik,et al.  Almost ballistic transport for the weakly coupled Fibonacci Hamiltonian , 2013, 1307.0925.

[189]  D. Damanik,et al.  Singular Density of States Measure for Subshift and Quasi-Periodic Schrödinger Operators , 2013, 1304.0519.

[190]  P. Yuditskii,et al.  Counterexamples to the Kotani-Last Conjecture for Continuum Schr\"odinger Operators via Character-Automorphic Hardy Spaces , 2014, 1405.6343.

[191]  J. Fillman Spectral Homogeneity of Discrete One-Dimensional Limit-Periodic Operators , 2014, 1409.7734.

[192]  May Mei Spectra of discrete Schrödinger operators with primitive invertible substitution potentials , 2013, 1311.0954.

[193]  S. Jitomirskaya,et al.  Continuity of the Measure of the Spectrum for Quasiperiodic Schrödinger Operators with Rough Potentials , 2012, 1208.3991.

[194]  Yiqian Wang,et al.  Cantor spectrum for a class of $C^2$ quasiperiodic Schr\"odinger operators , 2014, 1410.0101.

[195]  D. Damanik,et al.  Quantum Dynamics of Periodic and Limit-Periodic Jacobi and Block Jacobi Matrices with Applications to Some Quantum Many Body Problems , 2014, 1407.5067.

[196]  A. Girand Dynamical Green functions and discrete Schrödinger operators with potentials generated by primitive invertible substitution , 2013, 1309.5714.

[197]  Z. Wen,et al.  The fractal dimensions of the spectrum of Sturm Hamiltonian , 2013, 1310.1473.

[198]  THE SPECTRAL PROPERTIES OF THE STRONGLY COUPLED STURM HAMILTONIAN OF CONSTANT TYPE , 2014 .

[199]  Uniform localization is always uniform , 2015, 1607.08566.

[200]  Imperfectly grown periodic medium: absence of localized states , 2015 .

[201]  M. Embree,et al.  Spectral properties of Schrödinger operators arising in the study of quasicrystals , 2012, 1210.5753.

[202]  J. You,et al.  Simple Counter-Examples to Kotani–Last Conjecture Via Reducibility , 2015 .

[203]  A. Avila Global theory of one-frequency Schrödinger operators , 2015 .

[204]  D. Damanik,et al.  The Fibonacci Hamiltonian , 2014, 1403.7823.

[205]  The Spectral Properties of the Strongly Coupled Sturm Hamiltonian of Eventually Constant Type , 2014, 1404.3344.

[206]  S. Jitomirskaya,et al.  Dynamics and spectral theory of quasi-periodic Schrödinger-type operators , 2015, Ergodic Theory and Dynamical Systems.

[207]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[208]  P. Munger Frequency dependence of Hölder continuity for quasiperiodic Schrödinger operators , 2018, Journal of Fractal Geometry.