Building the capacity for forecasting marine biogeochemistry and ecosystems: recent advances and future developments

Building the capacity for monitoring and forecasting marine biogeochemistry and ecosystem dynamics is a scientific challenge of strategic importance in the context of rapid environmental change and growing public awareness of its potential impacts on marine ecosystems and resources. National Operational Oceanography centres have started to take up this challenge by integrating biogeochemistry in operational systems. Ongoing activities are illustrated in this paper by presenting examples of (pre-)operational biogeochemical systems active in Europe and North America for global to regional applications. First-order principles underlying biogeochemical modelling are briefly introduced along with the description of biogeochemical components implemented in these systems. Applications are illustrated with examples from the fields of hindcasting and monitoring ocean primary production, the assessment of the ocean carbon cycle and the management of living resources. Despite significant progress over the past 5 years in integrating biogeochemistry into (pre-)operational data-assimilation systems, a sustained research effort is still needed to assess these systems and their products with respect to their usefulness to the management of marine systems.

[1]  Curtis D. Mobley,et al.  Fast light calculations for ocean ecosystem and inverse models. , 2011, Optics express.

[2]  James C. McWilliams,et al.  Diurnal Coupling in the Tropical Oceans of CCSM3 , 2006 .

[3]  Anna Teruzzi,et al.  Seasonal and inter-annual variability of plankton chlorophyll and primary production in the Mediterranean Sea: a modelling approach , 2011 .

[4]  Nicholas R. Bates,et al.  Pelagic functional group modeling: Progress, challenges and prospects , 2006 .

[5]  Masahiko Fujii,et al.  The Value of Adding Optics to Ecosystem Models: A Case Study , 2007 .

[6]  A. Crise,et al.  An a priori approach to assimilation of ecological data in marine ecosystem models , 2003 .

[7]  C. Mann,et al.  A Practical Treatise on Diseases of the Skin , 1889, Atlanta Medical and Surgical Journal (1884).

[8]  Peter R. Oke,et al.  Status and future of data assimilation in operational oceanography , 2015 .

[9]  Rainer Bleck,et al.  An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates , 2002 .

[10]  John A. Harrison,et al.  Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: An overview of Global Nutrient Export from Watersheds (NEWS) models and their application , 2005 .

[11]  Patrick Lehodey,et al.  On the use of IPCC-class models to assess the impact of climate on Living Marine Resources , 2011 .

[12]  Corinne Le Quéré,et al.  iMarNet: an ocean biogeochemistry model intercomparison project within a common physical ocean modelling framework , 2014 .

[13]  Jerry Blackford,et al.  Ecosystem dynamics at six contrasting sites: a generic modelling study , 2004 .

[14]  James Harle,et al.  Potential consequences of climate change for primary production and fish production in large marine ecosystems , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[15]  Corinne Le Quéré,et al.  iMarNet : an ocean biogeochemistry model intercomparison project within a common physical ocean modelling framework , 2014 .

[16]  F. Saucier,et al.  Application of SeaWIFS- and AVHRR-derived data for mesoscale and regional validation of a 3-D high-resolution physical–biological model of the Gulf of St. Lawrence (Canada) , 2006 .

[17]  T. Kana,et al.  Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a:carbon ratio to light, nutrient-limitation and temperature , 1997 .

[18]  Lawrence L. Takacs,et al.  Data Assimilation Using Incremental Analysis Updates , 1996 .

[19]  M. Drévillon,et al.  Evaluation of global monitoring and forecasting systems at Mercator Océan , 2013 .

[20]  J. Siddorn,et al.  An operational ocean forecast system incorporating NEMO and SST data assimilation for the tidally driven European North-West shelf , 2012 .

[21]  Andreas Moll,et al.  Validation of the three-dimensional ECOHAM model in the German Bight for 2004 including population dynamics of Pseudocalanus elongatus , 2009 .

[22]  Philippe Cury,et al.  Simulations of fishing effects on the southern Benguela fish community using an individual-based model: learning from a comparison with ECOSIM , 2004 .

[23]  I. Totterdell,et al.  Production and export in a global ocean ecosystem model , 2001 .

[24]  John G. Field,et al.  Combined Fishing and Climate Forcing in the Southern Benguela Upwelling Ecosystem: An End-to-End Modelling Approach Reveals Dampened Effects , 2014, PloS one.

[25]  Olivier Aumont,et al.  Response of diatoms distribution to global warming and potential implications: A global model study , 2005 .

[26]  Jean-Michel Brankart,et al.  Stochastic estimation of biogeochemical parameters from Globcolour ocean colour satellite data in a North Atlantic 3D ocean coupled physical–biogeochemical model , 2013 .

[27]  Rosa Barciela,et al.  Assessment and development of a sediment model within an operational system , 2012 .

[28]  Francisco P. Chavez,et al.  Continental-shelf sediment as a primary source of iron for coastal phytoplankton , 1999, Nature.

[29]  Christoph Heinze,et al.  Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models , 2013 .

[30]  S. Doney,et al.  An intermediate complexity marine ecosystem model for the global domain , 2001 .

[31]  Changsheng Chen,et al.  Observing system simulation experiments of dissolved oxygen monitoring in Massachusetts Bay , 2012 .

[32]  A. Samuelsen,et al.  Influence of horizontal model grid resolution on the simulated primary production in an embedded primary production model in the Norwegian Sea , 2009 .

[33]  David M. Karl,et al.  VERTEX: carbon cycling in the northeast Pacific , 1987 .

[34]  F. A. Richards,et al.  The influence of organisms on the composition of sea-water , 1963 .

[35]  Nicolas Gruber,et al.  Ocean deoxygenation in a warming world. , 2010, Annual review of marine science.

[36]  Anna Teruzzi,et al.  Pre-operational short-term forecasts for Mediterranean Sea biogeochemistry , 2009 .

[37]  M. Skogen,et al.  A user's guide to NORVECOM V2.0. the norwegian ecological model system , 1998 .

[38]  J. Orr On ocean carbon-cycle model comparison , 1999 .

[39]  A. Moll,et al.  Modelling Pseudocalanus elongatus stage-structured population dynamics embedded in a water column ecosystem model for the northern North Sea , 2007 .

[40]  Scott C. Doney,et al.  Assessment of skill and portability in regional marine biogeochemical models : Role of multiple planktonic groups , 2007 .

[41]  S. Doney,et al.  A modeling study of the seasonal oxygen budget of the global ocean , 2007 .

[42]  Dag L. Aksnes,et al.  Modelling the primary production in the North Sea using a coupled three-dimensional physical-chemical-biological ocean model , 1995 .

[43]  L. Bopp,et al.  What does temporal variability in aeolian dust deposition contribute to sea‐surface iron and chlorophyll distributions? , 2008 .

[44]  Rosa Barciela,et al.  Ocean color data assimilation with material conservation forimproving model estimates of air-sea CO2 flux , 2008 .

[45]  M. Droop SOME THOUGHTS ON NUTRIENT LIMITATION IN ALGAE 1 , 1973 .

[46]  Momme Butenschön,et al.  Validation of the NEMO-ERSEM operational ecosystem model for the North West European Continental Shelf , 2012 .

[47]  Pierre Brasseur,et al.  Toward a multivariate reanalysis of the North Atlantic Ocean biogeochemistry during 1998-2006 based on the assimilation of SeaWiFS chlorophyll data , 2012 .

[48]  John Siddorn,et al.  Forecasting the ocean state using NEMO:The new FOAM system , 2010 .

[49]  James While,et al.  Assimilation of pCO2 data into a global coupled physical‐biogeochemical ocean model , 2012 .

[50]  Jean-Michel Brankart,et al.  On the inversion of submesoscale tracer fields to estimate the surface ocean circulation , 2013 .

[51]  Thomas R. Anderson,et al.  When is a biogeochemical model too complex? Objective model reduction and selection for North Atlantic time-series sites , 2013 .

[52]  H. D. Baar,et al.  Distributions, sources and sinks of iron in seawater , 2001 .

[53]  Laurent Bertino,et al.  Application of the Gaussian anamorphosis to assimilation in a 3-D coupled physical-ecosystem model of the North Atlantic with the EnKF: a twin experiment , 2009 .

[54]  Christoph Heinze,et al.  An isopycnic ocean carbon cycle model , 2009 .

[55]  A. Navarra,et al.  A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part II: numerical simulations. , 2007 .

[56]  W. Richard,et al.  TEMPERATURE AND PHYTOPLANKTON GROWTH IN THE SEA , 1972 .

[57]  Jean-Michel Brankart,et al.  Improving the physics of a coupled physical-biogeochemical model of the North Atlantic through data assimilation: impact on the ecosystem. , 2007 .

[58]  D. Ford,et al.  Assimilating GlobColour ocean colour data into a pre-operational physical-biogeochemical model , 2012 .

[59]  Jason T. Holt,et al.  The carbonate system in the North Sea: sensitivity and model validation , 2012 .

[60]  Andrew J. Watson,et al.  Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models , 2005 .

[61]  Pierre Brasseur,et al.  The SEEK filter method for data assimilation in oceanography: a synthesis , 2006 .

[62]  C. S. Wong,et al.  Climatological mean and decadal change in surface ocean pCO2, and net seaair CO2 flux over the global oceans , 2009 .

[63]  Sallie W. Chisholm,et al.  Emergent Biogeography of Microbial Communities in a Model Ocean , 2007, Science.

[64]  Patrick Lehodey,et al.  A spatial ecosystem and populations dynamics model (SEAPODYM) – Modeling of tuna and tuna-like populations , 2008 .

[65]  M. Gehlen,et al.  Integration of biogeochemistry into Mercator Ocean systems , 2011 .

[66]  Adrian P. Martin,et al.  Bringing physics to life at the submesoscale , 2012 .

[67]  Patrick Lehodey,et al.  Parameter estimation for basin-scale ecosystem-linked population models of large pelagic predators: Application to skipjack tuna , 2008 .

[68]  R. Evans,et al.  Bridging ocean color observations of the 1980s and 2000s in search of long-term trends , 2005 .

[69]  Laurent Bertino,et al.  Impact of data assimilation of physical variables on the spring bloom from TOPAZ operational runs in the North Atlantic , 2009 .

[70]  Controlling atmospheric forcing parameters of global ocean models: sequential assimilation of sea surface Mercator-Ocean reanalysis data , 2009 .

[71]  P. Delecluse,et al.  OPA 8.1 Ocean General Circulation Model reference manual , 1998 .

[72]  Hervé Claustre,et al.  Bio-optical profiling floats as new observational tools for biogeochemical and ecosystem studies: Potential synergies with ocean color remote sensing , 2010 .

[73]  E. Maier‐Reimer,et al.  Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms , 2005, Nature.

[74]  Marjorie A. M. Friedrichs,et al.  Using biogeochemical data assimilation to assess the relative skill of multiple ecosystem models in the Mid-Atlantic Bight: effects of increasing the complexity of the planktonic food web , 2014 .

[75]  Anna Teruzzi,et al.  A 3-D variational assimilation scheme in coupled transport-biogeochemical models: Forecast of Mediterranean biogeochemical properties , 2014, Journal of geophysical research. Oceans.

[76]  Andrew G. Dickson,et al.  Guide to best practices for ocean CO2 measurements , 2007 .

[77]  N. Pinardi,et al.  An oceanographic three-dimensional variational data assimilation scheme , 2008 .

[78]  Thomas R. Anderson,et al.  A spectrally averaged model of light penetration and photosynthesis , 1993 .

[79]  Raghu Murtugudde,et al.  Quantification of the Feedback between Phytoplankton and ENSO in the Community Climate System Model , 2010 .

[80]  F. Joos,et al.  Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models , 2008 .

[81]  M. Payne,et al.  A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink , 2013 .

[82]  Jens Hartmann,et al.  Global patterns of dissolved silica export to the coastal zone: Results from a spatially explicit global model , 2009 .

[83]  Patrick Lehodey,et al.  Shifting from marine reserves to maritime zoning for conservation of Pacific bigeye tuna (Thunnus obesus) , 2012, Proceedings of the National Academy of Sciences.

[84]  Prasanth Divakaran,et al.  GODAE OceanView Class 4 forecast verification framework: global ocean inter-comparison , 2015 .

[85]  A. Christensen,et al.  Spatially resolved fish population analysis for designing MPAs: influence on inside and neighbouring habitats , 2009 .

[86]  Watson W. Gregg,et al.  Skill Assessment in Ocean Biological Data Assimilation , 2009 .

[87]  Laurent Bertino,et al.  Gaussian anamorphosis extension of the DEnKF for combined state parameter estimation: Application to a 1D ocean ecosystem model , 2012 .

[88]  Patrick Lehodey,et al.  Integrating biogeochemistry and ecology into ocean data assimilation systems , 2009 .

[89]  Quinten Vanhellemont,et al.  Challenges and opportunities for geostationary ocean colour remote sensing of regional seas: A review of recent results , 2014 .

[90]  Momme Butenschön,et al.  Modelling the effects of climate change on the distribution and production of marine fishes: accounting for trophic interactions in a dynamic bioclimate envelope model , 2013, Global change biology.

[91]  M. Friedrichs,et al.  The assimilation of satellite‐derived data into a one‐dimensional lower trophic level marine ecosystem model , 2014 .

[92]  W. Paul Budgell,et al.  Interannual variability in Nordic seas primary production , 2007 .

[93]  A. Christensen,et al.  Towards an integrated forecasting system for fisheries on habitat-bound stocks , 2013 .

[94]  P. L. Houtekamer,et al.  Increasing the horizontal resolution of ensemble forecasts at CMC , 2003 .

[95]  Andrew Ryan,et al.  Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new Global FOAM forecasts , 2013 .

[96]  Geir Huse,et al.  End-To-End Models for the Analysis of Marine Ecosystems: Challenges, Issues, and Next Steps , 2010 .

[97]  Adrian Hines,et al.  Data assimilation in the FOAM operational short‐range ocean forecasting system: a description of the scheme and its impact , 2007 .

[98]  Richard J. Geider,et al.  A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature , 1998 .

[99]  Marcello Vichi,et al.  A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part I: Theory , 2007 .

[100]  Kieran Lyons,et al.  A simple short range model for the prediction of harmful algal events in the bays of southwestern Ireland , 2010 .

[101]  G. Madec,et al.  OPA 8.1 Tracer Model reference manual , 2000 .

[102]  Cecile Cabanes,et al.  The CORA dataset: validation and diagnostics of in-situ ocean temperature and salinity measurements , 2013 .

[103]  F. Saucier,et al.  Seasonal versus synoptic variability in planktonic production in a high-latitude marginal sea: The Gulf of St. Lawrence (Canada) , 2005 .

[104]  Richard P Stumpf,et al.  Skill assessment for an operational algal bloom forecast system. , 2009, Journal of marine systems : journal of the European Association of Marine Sciences and Techniques.

[105]  Patrick Lehodey,et al.  Bridging the gap from ocean models to population dynamics of large marine predators: A model of mid-trophic functional groups , 2010 .

[106]  A. Alldredge,et al.  Temporal decoupling of carbon and nitrogen dynamics in a mesocosm diatom bloom , 2002 .

[107]  Julian Icarus Allen,et al.  Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models , 2007 .

[108]  G. Madec NEMO ocean engine , 2008 .

[109]  Jacqueline Boutin,et al.  An update to the Surface Ocean CO2 Atlas (SOCAT version 2) , 2013 .

[110]  Jean-Michel Brankart,et al.  Incremental Analysis Update Implementation into a Sequential Ocean Data Assimilation System , 2006 .

[111]  Richard C. Dugdale,et al.  One-dimensional ecosystem model of the equatorial Pacific upwelling system. Part I: model development and silicon and nitrogen cycle , 2002 .

[112]  C. Davis,et al.  Optimizing plankton survey strategies using Observing System Simulation Experiments , 2010 .

[113]  T. Oki,et al.  Design of Total Runoff Integrating Pathways (TRIP)—A Global River Channel Network , 1998 .

[114]  Wolfgang Ludwig,et al.  Predicting the oceanic input of organic carbon by continental erosion , 1996 .

[115]  A. Oschlies,et al.  Biogeochemical consequences of ocean acidification and feedbacks to the earth system , 2011 .

[116]  L. Bopp,et al.  Globalizing results from ocean in situ iron fertilization studies , 2006 .

[117]  Paul G. Falkowski,et al.  A consumer's guide to phytoplankton primary productivity models , 1997 .

[118]  Cara Wilson,et al.  The rocky road from research to operations for satellite ocean-colour data in fishery management , 2011 .

[119]  J. G. Baretta-Bekker,et al.  Microbial dynamics in the marine ecosystem model ERSEM II with decoupled carbon assimilation and nutrient uptake , 1997 .

[120]  A. Weaver,et al.  Implementing a variational data assimilation system in an operational 1/4 degree global ocean model , 2015 .

[121]  Timothy J. Smyth,et al.  Assimilation of remotely-sensed optical properties to improve marine biogeochemistry modelling , 2014 .

[122]  P. Ruardij,et al.  The European regional seas ecosystem model, a complex marine ecosystem model , 1995 .

[123]  C. McClain,et al.  Seasonal and interannual variability of phytoplankton, nutrients, TCO2, pCO2, and O2 in the eastern subarctic Pacific (ocean weather station Papa) , 2001 .

[124]  M. Gehlen,et al.  Skill assessment of three earth system models with common marine biogeochemistry , 2013, Climate Dynamics.