On Optimal 2- and 3-Planar Graphs

A graph is k-planar if it can be drawn in the plane such that no edge is crossed more than k times. While for k=1, optimal 1-planar graphs, i.e., those with n vertices and exactly 4n-8 edges, have been completely characterized, this has not been the case for k > 1. For k=2,3 and 4, upper bounds on the edge density have been developed for the case of simple graphs by Pach and Toth, Pach et al. and Ackerman, which have been used to improve the well-known "Crossing Lemma". Recently, we proved that these bounds also apply to non-simple 2- and 3-planar graphs without homotopic parallel edges and self-loops. In this paper, we completely characterize optimal 2- and 3-planar graphs, i.e., those that achieve the aforementioned upper bounds. We prove that they have a remarkably simple regular structure, although they might be non-simple. The new characterization allows us to develop notable insights concerning new inclusion relationships with other graph classes.

[1]  Walter Didimo,et al.  Drawing graphs with right angle crossings , 2009, Theor. Comput. Sci..

[2]  Michael A. Bekos,et al.  On the Density of Non-simple 3-Planar Graphs , 2016, Graph Drawing.

[3]  Franz-Josef Brandenburg 1-Visibility Representations of 1-Planar Graphs , 2014, J. Graph Algorithms Appl..

[4]  F. Thomas Leighton,et al.  Complexity Issues in VLSI , 1983 .

[5]  George Pólya A note of welcome , 1977, J. Graph Theory.

[6]  Franz-Josef Brandenburg,et al.  Recognizing Optimal 1-Planar Graphs in Linear Time , 2016, Algorithmica.

[7]  János Pach,et al.  Graphs drawn with few crossings per edge , 1997, Comb..

[8]  Ellen Gethner,et al.  Bar k-Visibility Graphs , 2007, J. Graph Algorithms Appl..

[9]  Giuseppe Liotta,et al.  Fáry's Theorem for 1-Planar Graphs , 2012, COCOON.

[10]  Otfried Cheong,et al.  On the Number of Edges of Fan-Crossing Free Graphs , 2013, Algorithmica.

[11]  Michael A. Bekos,et al.  1-Planar Graphs have Constant Book Thickness , 2015, ESA.

[12]  G. Ringel Ein Sechsfarbenproblem auf der Kugel , 1965 .

[13]  E. Szemerédi,et al.  Crossing-Free Subgraphs , 1982 .

[14]  János Pach,et al.  Improving the Crossing Lemma by Finding More Crossings in Sparse Graphs , 2006, Discret. Comput. Geom..

[15]  M. Kaufmann Bar 1-Visibility Graphs vs. other Nearly Planar Graphs , 2014 .

[16]  Oleg V. Borodin A new proof of the 6 color theorem , 1995, J. Graph Theory.

[17]  Roberto Tamassia,et al.  A unified approach to visibility representations of planar graphs , 1986, Discret. Comput. Geom..

[18]  László Lovász,et al.  On Conway's Thrackle Conjecture , 1995, SCG '95.

[19]  Michael Kaufmann,et al.  The Density of Fan-Planar Graphs , 2014, Electron. J. Comb..

[20]  János Pach,et al.  Improving the crossing lemma by finding more crossings in sparse graphs: [extended abstract] , 2004, SCG '04.

[21]  K. Wagner,et al.  Über 1-optimale Graphen , 1984 .

[22]  Ioannis G. Tollis,et al.  Fan-planarity: Properties and complexity , 2015, Theor. Comput. Sci..

[23]  Emilio Di Giacomo,et al.  Planar and Quasi Planar Simultaneous Geometric Embedding , 2014, Graph Drawing.

[24]  Yusuke Suzuki Re-embeddings of Maximum 1-Planar Graphs , 2010, SIAM J. Discret. Math..

[25]  Noga Alon,et al.  Disjoint edges in geometric graphs , 1989, Discret. Comput. Geom..

[26]  Michael Kaufmann,et al.  Bar 1-Visibility Graphs vs. other Nearly Planar Graphs , 2014, J. Graph Algorithms Appl..

[27]  Eyal Ackerman,et al.  On topological graphs with at most four crossings per edge , 2015, Comput. Geom..

[28]  Michael A. Bekos,et al.  On the Relationship between k-Planar and k-Quasi Planar Graphs , 2017, WG.