Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer

[1]  R. Stoughton,et al.  Experimental annotation of the human genome using microarray technology , 2001, Nature.

[2]  M. Lanotte,et al.  Gene expression networks underlying retinoic acid-induced differentiation of acute promyelocytic leukemia cells. , 2000, Blood.

[3]  Yudong D. He,et al.  Functional Discovery via a Compendium of Expression Profiles , 2000, Cell.

[4]  C. Fizames,et al.  Estimate of human gene number provided by genome-wide analysis using Tetraodon nigroviridis DNA sequence , 2000, Nature Genetics.

[5]  P. Green,et al.  Analysis of expressed sequence tags indicates 35,000 human genes , 2000, Nature Genetics.

[6]  T. Hughes,et al.  Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. , 2000, Science.

[7]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[8]  M. Sussman,et al.  Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array , 1999, Nature Biotechnology.

[9]  Christian A. Rees,et al.  Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[10]  J. Mesirov,et al.  Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[11]  M. Bittner,et al.  Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays. , 1998, Cancer research.

[12]  D. Botstein,et al.  The transcriptional program of sporulation in budding yeast. , 1998, Science.

[13]  S H Kim,et al.  Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. , 1998, Science.

[14]  A. Pardee,et al.  3'-end cDNA pool suitable for differential display from a small number of cells. , 1998, BioTechniques.

[15]  P. Brown,et al.  Exploring the metabolic and genetic control of gene expression on a genomic scale. , 1997, Science.

[16]  E. Southern,et al.  Steric factors influencing hybridisation of nucleic acids to oligonucleotide arrays. , 1997, Nucleic acids research.

[17]  D. Lockhart,et al.  Expression monitoring by hybridization to high-density oligonucleotide arrays , 1996, Nature Biotechnology.

[18]  A. Blanchard,et al.  High-density oligonucleotide arrays , 1996 .

[19]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[20]  R. Ratliff,et al.  Evidence from CD spectra that d(purine).r(pyrimidine) and r(purine).d(pyrimidine) hybrids are in different structural classes. , 1994, Nucleic acids research.

[21]  A. Thiel,et al.  Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. , 1994, Nucleic acids research.

[22]  M. Fagioli,et al.  The molecular genetics of acute promyelocytic leukemia. , 1993, Blood reviews.

[23]  R Berger,et al.  NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3). , 1991, Blood.

[24]  S. P. Fodor,et al.  Light-directed, spatially addressable parallel chemical synthesis. , 1991, Science.

[25]  Najman,et al.  NB 4 , a Maturation Inducible Cell Line With t ( 15 ; 17 ) Marker Isolated From a Human Acute Promyelocytic Leukemia ( M 3 ) , 2022 .