Sensing reality and communicating bits: a dangerous liaison

To illustrate the conceptual issues related to sampling, source representation/coding and communication in sensor networks, we review the underlying theory and discuss specific examples. We show how the structure of the distributed sensing and communication problem dictates new processing architectures. The key challenge lies in the discretization of space, time and amplitude, since most of the advanced signal processing systems operate in discrete domain.

[1]  H. Vincent Poor,et al.  Distributed learning in wireless sensor networks , 2005, IEEE Signal Processing Magazine.

[2]  E. Adelson,et al.  The Plenoptic Function and the Elements of Early Vision , 1991 .

[3]  Anthony Ephremides,et al.  Information Theory and Communication Networks: An Unconsummated Union , 1998, IEEE Trans. Inf. Theory.

[4]  K. Ramchandran,et al.  Distributed video coding in wireless sensor networks , 2006, IEEE Signal Processing Magazine.

[5]  Aaron D. Wyner,et al.  The rate-distortion function for source coding with side information at the decoder , 1976, IEEE Trans. Inf. Theory.

[6]  Kannan Ramchandran,et al.  Distributed source coding using syndromes (DISCUS): design and construction , 2003, IEEE Trans. Inf. Theory.

[7]  Harry Shum,et al.  Plenoptic sampling , 2000, SIGGRAPH.

[8]  Jack K. Wolf,et al.  Noiseless coding of correlated information sources , 1973, IEEE Trans. Inf. Theory.

[9]  Cathy H. Xia,et al.  Distributed source coding in dense sensor networks , 2005, Data Compression Conference.

[10]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[11]  Michael Gastpar,et al.  Correction of "The Distributed Karhunen - Loeve Transform" , 2007 .

[12]  Mingyan Liu,et al.  On the Many-to-One Transport Capacity of a Dense Wireless Sensor Network and the Compressibility of Its Data , 2003, IPSN.

[13]  Zhi-Quan Luo,et al.  Multiterminal Source-Channel Communication Under Orthogonal Multiple Access , 2005 .

[14]  Thierry Blu,et al.  Sampling signals with finite rate of innovation , 2002, IEEE Trans. Signal Process..

[15]  Bernd Girod,et al.  Compression with side information using turbo codes , 2002, Proceedings DCC 2002. Data Compression Conference.

[16]  Thomas M. Cover,et al.  A Proof of the Data Compression Theorem of Slepian and Wolf for Ergodic Sources , 1971 .

[17]  Aaron D. Wyner,et al.  Recent results in the Shannon theory , 1974, IEEE Trans. Inf. Theory.

[18]  Martin Vetterli,et al.  On the Multiterminal Rate-Distortion Function for Acoustic Sensing , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[19]  Kannan Ramchandran,et al.  Distributed source coding: symmetric rates and applications to sensor networks , 2000, Proceedings DCC 2000. Data Compression Conference.

[20]  Michael Gastpar,et al.  The distributed Karhunen-Loeve transform , 2002, 2002 IEEE Workshop on Multimedia Signal Processing..

[21]  G.B. Giannakis,et al.  Distributed compression-estimation using wireless sensor networks , 2006, IEEE Signal Processing Magazine.

[22]  David L. Neuhoff,et al.  Reliability vs. efficiency in distributed source coding for field-gathering sensor networks , 2004, IPSN.

[23]  Te Sun Han,et al.  Slepian-Wolf-Cover Theorem for Networks of Channels , 1980, Inf. Control..

[24]  Michael Gastpar,et al.  On the capacity of wireless networks: the relay case , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[25]  P.K. Varshney,et al.  Channel-aware distributed detection in wireless sensor networks , 2006, IEEE Signal Processing Magazine.

[26]  Ying Zhao,et al.  Compression of correlated binary sources using turbo codes , 2001, IEEE Communications Letters.

[27]  Arunabha Bagchi,et al.  On the estimation and compression of distributed correlated signals with incomplete observations , 2003 .

[28]  Don H. Johnson,et al.  Array Signal Processing: Concepts and Techniques , 1993 .

[29]  Masoud Salehi,et al.  Multiple access channels with arbitrarily correlated sources , 1980, IEEE Trans. Inf. Theory.

[30]  T. Ajdler,et al.  The Plenacoustic Function and Its Sampling , 2006, IEEE Transactions on Signal Processing.

[31]  Zhen Zhang,et al.  On the CEO problem , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[32]  Cindy C. Parman,et al.  To code, or not to code? , 2003, The Journal of oncology management : the official journal of the American College of Oncology Administrators.

[33]  Yasutada Oohama,et al.  The Rate-Distortion Function for the Quadratic Gaussian CEO Problem , 1998, IEEE Trans. Inf. Theory.

[34]  Pier Luigi Dragotti,et al.  Distributed sampling and compression of scenes with finite rate of innovation in camera sensor networks , 2006, Data Compression Conference (DCC'06).

[35]  Baltasar Beferull-Lozano,et al.  Rate-distortion problem for physics based distributed sensing , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[36]  M. Alanyali,et al.  Search and discovery in an uncertain networked world , 2006, IEEE Signal Processing Magazine.

[37]  Panganamala Ramana Kumar,et al.  RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN , 2001 .

[38]  Kannan Ramchandran,et al.  Distributed Sampling for Dense Sensor Networks: A "Bit-Conservation Principle" , 2003, IPSN.

[39]  Toby Berger,et al.  The CEO problem [multiterminal source coding] , 1996, IEEE Trans. Inf. Theory.

[40]  Krishnan Eswaran,et al.  Remote Source Coding and AWGN CEO Problems , 2006 .

[41]  M. Unser Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.

[42]  João Barros,et al.  Network information flow with correlated sources , 2005, IEEE Transactions on Information Theory.

[43]  Pier Luigi Dragotti,et al.  Symmetric and asymmetric Slepian-Wolf codes with systematic and nonsystematic linear codes , 2005, IEEE Communications Letters.

[44]  Michael Gastpar,et al.  On the capacity of large Gaussian relay networks , 2005, IEEE Transactions on Information Theory.

[45]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[46]  Kannan Ramchandran,et al.  Distributed source coding using syndromes (DISCUSS): design and construction , 1999 .

[47]  Zixiang Xiong,et al.  Design of Slepian-Wolf codes by channel code partitioning , 2004, Data Compression Conference, 2004. Proceedings. DCC 2004.

[48]  Lang Tong,et al.  The interplay between signal processing and networking in sensor networks , 2006, IEEE Signal Processing Magazine.

[49]  Yasutada Oohama Gaussian multiterminal source coding , 1997, IEEE Trans. Inf. Theory.

[50]  D. Marco,et al.  Reliability vs. efficiency in distributed source coding for field-gathering sensor networks , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[51]  Michael Gastpar,et al.  On The Significance Of Binning In A Scaling-law Sense , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Punta del Este.

[52]  A.S. Willsky,et al.  Distributed fusion in sensor networks , 2006, IEEE Signal Processing Magazine.

[53]  Michael Gastpar,et al.  Power, spatio-temporal bandwidth, and distortion in large sensor networks , 2005, IEEE Journal on Selected Areas in Communications.

[54]  Martin J. Wainwright,et al.  Distributed fusion in sensor networks: a graphical models perspective , 2006 .

[55]  Zixiang Xiong,et al.  Compression of binary sources with side information at the decoder using LDPC codes , 2002, IEEE Communications Letters.

[56]  Pier Luigi Dragotti,et al.  Dfferent - distributed and fully flexible image encoders for camera sensor networks , 2005, IEEE International Conference on Image Processing 2005.