Dynamic excitations in membranes induced by optical tweezers.

We present the phenomenology of transformations in lipid bilayers that are excited by laser tweezers. A variety of dynamic instabilities and shape transformations are observed, including the pearling instability, expulsion of vesicles, and more exotic ones, such as the formation of passages. Our physical picture of the laser-membrane interaction is based on the generation of tension in the bilayer and loss of surface area. Although tension is the origin of the pearling instability, it does not suffice to explain expulsion of vesicles, where we observe opening of giant pores and creeping motion of bilayers. We present a quantitative theoretical framework to understand most of the observed phenomenology. The main hypothesis is that lipid is pulled into the optical trap by the familiar dielectric effect, is disrupted, and finally is repackaged into an optically unresolvable suspension of colloidal particles. This suspension, in turn, can produce osmotic pressure and depletion forces, driving the observed transformations.

[1]  Udo Seifert,et al.  Configurations of fluid membranes and vesicles , 1997 .

[2]  Steven M. Block,et al.  Optical tweezers : a new tool for biophysics , 1990 .

[3]  R. Bar-Ziv,et al.  Spontaneous Expulsion of Giant Lipid Vesicles Induced by Laser Tweezers , 1996, cond-mat/9610070.

[4]  Samuel A. Safran,et al.  Localized Dynamic Light Scattering: Probing Single Particle Dynamics at the Nanoscale , 1997 .

[5]  E. Chang Pressure as a Probe of Vesicle Fusion , 1987 .

[6]  Reinhard Lipowsky,et al.  Structure and dynamics of membranes , 1995 .

[7]  A. Ashkin,et al.  Optical trapping and manipulation of single cells using infrared laser beams , 1987, Nature.

[8]  E. Evans Detailed mechanics of membrane-membrane adhesion and separation. I. Continuum of molecular cross-bridges. , 1985, Biophysical journal.

[9]  Charles S. Peskin,et al.  Dynamics of osmotic fluid flow , 1992 .

[10]  Watt W. Webb,et al.  Thermal fluctuations of large quasi-spherical bimolecular phospholipid vesicles , 1984 .

[11]  T. Charitat,et al.  Lattice of passages connecting membranes , 1997 .

[12]  Richard M. Pashley,et al.  Hydration forces between mica surfaces in aqueous electrolyte solutions , 1981 .

[13]  P. Canham The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. , 1970, Journal of theoretical biology.

[14]  Evans,et al.  Spinodal fluctuations of budding vesicles. , 1995, Physical review letters.

[15]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[16]  T. E. Thompson,et al.  Photon correlation spectroscopic study of the size distribution of phospholipid vesicles. , 1982, Biophysical journal.

[17]  The budding transition of phospholipid vesicles : a quantitative study via phase contrast microscopy , 1995 .

[18]  A. Ashkin,et al.  Applications of laser radiation pressure. , 1980, Science.

[19]  U. Seifert,et al.  Shape Transformations of Giant Vesicles: Extreme Sensitivity to Bilayer Asymmetry , 1990 .

[20]  Kelvin Osmotic Pressure , 1897, Nature.

[21]  Erich Sackmann,et al.  Bending elastic moduli of lipid bilayers : modulation by solutes , 1990 .

[22]  Bensimon,et al.  Observation of toroidal vesicles. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[23]  U. Seifert,et al.  Front propagation in the pearling instability of tubular vesicles , 1995, cond-mat/9510093.

[24]  Reinhard Lipowsky,et al.  Generic interactions of flexible membranes , 1995 .

[25]  J. CLERK MAXWELL,et al.  Statique expérimentale et théorique des Liquides soumis aux seules Forces moléculaires, , 1874, Nature.

[26]  Self-consistent theory of bound vesicles. , 1995, Physical review letters.

[27]  A. Ashkin,et al.  Optical trapping and manipulation of neutral particles using lasers. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[28]  James S. Langer,et al.  Propagating pattern selection , 1983 .

[29]  K. Svoboda,et al.  Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.

[30]  F. MacKintosh,et al.  Front propagation in laser-tweezed lipid bilayer tubules , 1996, cond-mat/9610048.

[31]  Evans,et al.  Entropy-driven tension and bending elasticity in condensed-fluid membranes. , 1990, Physical review letters.

[32]  W. Helfrich Chapter 14 – Tension-Induced Mutual Adhesion and a Conjectured Superstructure of Lipid Membranes , 1995 .

[33]  H. W. Veen,et al.  Handbook of Biological Physics , 1996 .

[34]  D. Marsh CRC handbook of lipid bilayers , 1990 .

[35]  R. Bar-Ziv,et al.  CRITICAL DYNAMICS IN THE PEARLING INSTABILITY OF MEMBRANES , 1997 .

[36]  Seifert,et al.  Conformal degeneracy and conformal diffusion of vesicles. , 1993, Physical review letters.

[37]  F. Brochard,et al.  Frequency spectrum of the flicker phenomenon in erythrocytes , 1975 .

[38]  Ou-Yang Zhong-can,et al.  Anchor ring-vesicle membranes. , 1990 .

[39]  Moses,et al.  Entropic expulsion in vesicles. , 1995, Physical review letters.

[40]  G. Stock,et al.  Determination by photon correlation spectroscopy of particle size distributions in lipid vesicle suspensions. , 1977, Biophysical journal.

[41]  Moses,et al.  Instability and "pearling" states produced in tubular membranes by competition of curvature and tension. , 1994, Physical review letters.

[42]  Comment on "Instability and deformation of a spherical vesicle by pressure" , 1988, Physical review letters.

[43]  U. Seifert The concept of effective tension for fluctuating vesicles , 1995 .

[44]  S. Chu,et al.  Quantitative measurements of force and displacement using an optical trap. , 1996, Biophysical journal.

[45]  S. Simon,et al.  Permeability and Stability of Lipid Bilayers , 1995 .

[46]  Evan Evans,et al.  Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion and colloidal interactions , 1987 .

[47]  Helfrich,et al.  Unbinding transition of a biological model membrane. , 1989, Physical review letters.

[48]  F. Menger,et al.  Chemically-induced birthing and foraging in vesicle systems , 1994 .

[49]  Seifert,et al.  Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  Reinhard Lipowsky,et al.  Adhesion of membranes : a theoretical perspective , 1991 .

[51]  Steinberg,et al.  Vortex-front propagation in Rayleigh-Bénard convection. , 1987, Physical review letters.

[52]  Water Movement Through Lipid Bilayers, Pores, and Plasma Membranes: Theory and Reality. Distinguished Lecture Series of the Society of General Physiologists, Volume 4.Alan Finkelstein , 1988 .

[53]  Moses,et al.  Local unbinding of pinched membranes. , 1995, Physical review letters.

[54]  van Saarloos W Front propagation into unstable states: Marginal stability as a dynamical mechanism for velocity selection. , 1988, Physical review. A, General physics.

[55]  L. Rayleigh,et al.  XVI. On the instability of a cylinder of viscous liquid under capillary force , 1892 .

[56]  W. Helfrich,et al.  Mutual adhesion of lecithin membranes at ultralow tensions , 1989 .

[57]  W. Helfrich,et al.  The curvature elasticity of fluid membranes : A catalogue of vesicle shapes , 1976 .

[58]  R. Granek,et al.  Dynamics of Rayleigh-like Instability Induced by Laser Tweezers in Tubular Vesicles of Self-Assembled Membranes , 1995 .

[59]  Seifert,et al.  Dynamical Theory of the Pearling Instability in Cylindrical Vesicles. , 1994, Physical review letters.

[60]  C Sauterey,et al.  Osmotic pressure induced pores in phospholipid vesicles. , 1975, Biochemistry.

[61]  E. Evans,et al.  Bending resistance and chemically induced moments in membrane bilayers. , 1974, Biophysical journal.

[62]  Milner,et al.  Dynamical fluctuations of droplet microemulsions and vesicles. , 1987, Physical review. A, General physics.

[63]  J. Käs,et al.  Shape transitions and shape stability of giant phospholipid vesicles in pure water induced by area-to-volume changes. , 1991, Biophysical journal.

[64]  Libchaber,et al.  Buckling microtubules in vesicles. , 1996, Physical review letters.

[65]  Bensimon,et al.  Fluctuating vesicles of nonspherical topology. , 1994, Physical review letters.

[66]  Reinhard Lipowsky,et al.  The conformation of membranes , 1991, Nature.

[67]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[68]  Samuel A. Safran,et al.  Statistical Thermodynamics Of Surfaces, Interfaces, And Membranes , 1994 .

[69]  W. Helfrich,et al.  Undulations, steric interaction and cohesion of fluid membranes , 1984 .

[70]  S. Safran,et al.  NONLINEAR RESPONSE OF MEMBRANES TO PINNING SITES , 1997 .

[71]  J. Israelachvili Intermolecular and surface forces , 1985 .

[72]  W. Helfrich,et al.  Instability and deformation of a spherical vesicle by pressure. , 1987, Physical review letters.

[73]  A. Finkelstein,et al.  Water movement through lipid bilayers, pores, and plasma membranes : theory and reality , 1987 .

[74]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[75]  E. Schierenberg Laser-Induced Cell Fusion , 1987 .